
Cem Kaner Assessment in the Software Testing Course Page 1

Assessment in the Software Testing Course1
Cem Kaner2

Workshop on the Teaching of Software Testing
February 2003

This research was partially supported by NSF Grant EIA-0113539 ITR/SY+PE: "Improving the
Education of Software Testers." Any opinions, findings and conclusions or recommendations

expressed in this material are those of the author(s) and do not necessarily reflect the views of the
National Science Foundation (NSF).

Abstract
This report collects my notes on the assessment issues in my software testing course. These notes will serve
as the raw data archive for a summary paper submitted for traditional publication. The notes include a
description of approach to examinations, sample exam questions, exam study guide, examples of my grading
scheme for exams. The notes also include sample assignments (with grading notes).

Contents
1. Background: The Software Testing Course
2. Assessment Methods
3. Exams
4. Assignments
5. Bonus Assignments
6. Quizzes
7. Closing Notes, Including Plans for Change
Appendix A: Pool of questions given to students for exam preparation.
Appendix B: Study Guide. (How to study for this type of test. How to answer essay questions.)
Appendix C: Grading analysis for several exam questions.
Appendix D: Sample assignments and grading notes

1. Background: The Software Testing Course
This report collects my notes on the assessment issues involved in my software testing course. The notes are
still somewhat rough. I’ll probably edit them one more time before writing a summary paper for publication.
These notes will serve as the raw data archive for that summary paper.
The course itself has been in evolution since 1987, when I began “Tester College” while managing the
testing group in Electronic Arts’ Creativity Division. Hung Quoc Nguyen and I then developed a software
testing course for the Silicon Valley chapter of the American Society for Quality in 1994. I have taught that
course to working professionals frequently since then, in public courses offered by UC Berkeley Extension
and UC Santa Cruz Extension, Software Quality Engineering, Software Test Labs, logiGear, and Satisfice,
and in onsite classes at large and small software companies (such as Microsoft, Hewlett-Packard, Intel,
Quarterdeck, Compaq, PostalSoft, PowerQuest, Symantec, Rational, Kodak, Gilbarco, Aveo, BMC, IDTS,

Cem Kaner Assessment in the Software Testing Course Page 2

Tideworks, Wind River, Cigital, and many others.) A recent version of my commercial course notes is
available at http://www.testingeducation.org/coursenotes/kaner_cem/cm_200204_blackboxtesting.
I modified the course for academic use in 2000 and have taught the academic course at Florida Tech five
times, modifying it (especially in the assessment) each time. A version of my academic course notes is
available at http://www.testingeducation.org/coursenotes/kaner_cem/ac_200108_blackboxtesting.
The academic course focuses on black box software testing. I teach a second course in glass box testing that
takes the black box course as a prerequisite.
The black box course has five core topic areas, which I prioritize as follows:

 Paradigms of software testing: a look at 9 dominant styles of black box testing. Students apply
several of these to a sample application, such as StarOffice.

 Bug advocacy: effective replication, analysis, and reporting of bugs.
 Test documentation: examples of test documentation components and an overview of requirements

analysis to determine what is needed in what context.
 Additional test design issues: The primary examples are an overview of GUI-level regression testing

and design of these tests for maintainability, and all pairs combination testing.
 Process and organizational issues: We look primarily at the structure and missions of typical

software testing groups and the implications for testing of different software lifecycle models. This
material is presented primarily to provide context for those students who have no industrial
experience, and to provide exposure to alternative contexts for students who have worked only in
one or two companies.

Several other topics come and go in the class, depending on student interest, applicability to the sample
application that we are testing, and various other factors. These have included state-model-based testing,
software test metrics, high volume test automation, status reporting, project planning, quality/cost analysis,
failure modes and effects analysis, and finding a job in software testing.
This report focuses on assessment issues, and so I will not further discuss the choice of topics here.
Throughout the course, we apply what we learn to a sample application. So far, we’ve used the TI Interactive
Calculator and the word processing and the presentation modules of OpenOffice. Another senior member of
our faculty (James Whittaker) also uses sample applications in his testing courses, primarily Microsoft
products under development.
I recommend working with the open source products for several reasons:

 The students bug reports are publicly available. This can help them at job interview time (they can
point to records of their actual work product). It also encourages them to take the reporting task
seriously.

 Students can see the progress of their bugs through the bug reporting system, watching comments
develop on their bug reports, reporting fixes, complaining of non-reproducibility, asking for more
information, and so on. They get to participate in a series of real-project bug discussions, gaining
insight and experience that will be directly applicable on the job.

 The students’ work is valued and they get personal feedback. This is not true of all open source
projects, but an instructor can get a sense of the feedback style on the project by examining the
reports already in the bug tracking database before selecting an application.

2. Assessment Methods
Assessment is the course’s primary educational tool.
I give lectures and students (academic and commercial) generally like them, but lectures can only transmit so
much information, and students forget them anyway.

Cem Kaner Assessment in the Software Testing Course Page 3

I use the lectures to provide a structure for the material and to provide real-life examples, compelling or
entertaining stories that will help students understand how or why a technique was used in practice, what the
effects of different life cycle models can be, and so on. The lectures create contexts for the material.
During the lectures, I also run several discussions focused on hypotheticals or thought experiments. These
are effective learning tools for some students.
My expectation is that most students will do most of their learning while doing homework, assignments, and
studying for, writing, and reviewing the results of tests and exams.
I encourage students to work together when they do assignments. In general, encouraging collaboration
(students co-sign artifacts that they work on together, with the explicit expectation that more co-authors must
produce more work), seems to have been effective in eliminating plagiarism. The collaboration is done
openly instead of secretly.
However, because 35% of the final grade comes from the assignments, there is an incentive for a weak
student to pair with a stronger student in order to cash in on the high marks the stronger student will earn.
The first few times that I taught the course, this was a serious problem and at least two students passed the
course who probably should not have. I addressed this problem with the following policy, printed in the
syllabus (and reviewed with students in the first class):

To pass the course, you must have a passing average on the mid-term test and the final exam.
• Undergraduates (CSE 4431): If the average of your mid-term test and your final exam is below 60%,

you will fail the course no matter how well you do on the assignments and no matter how many bonus
points you have.

• Graduates (SWE 5410): If the average of your mid-term test and your final exam is below 68%, you
will fail the course no matter how well you do on the assignments and no matter how many bonus
points you have.

You can earn grades as follows
• In-class quizzes up to 5% (1% per quiz, pass/fail grading)
• Assignments 30-35% (depends on the number of quizzes)
• Mid-term test 25%
• Final exam 40%
• Bonus Assignments (including bug reports) up to 10%

o Bug reports up to 5%
Total points available 110%
I don't grade on a curve. If everyone gets 90% or more, everyone gets an A. (B is 80-89; C is 70-79; D is 60-69;
F is 0-59).

Since adopting the threshold policy, I haven’t seen as much obvious imbalance in effort on the assignments.
The student who can’t pass the exams can’t pass the course.

3. Exams
To maximize the educational benefits from the mid-term and final exams, I hand out a pool of questions a
few weeks before the exam. The exam questions are selected from the pool. The exam is closed book.

3.1 Benefits
The most important benefit of this approach is that it allows the students to think through their answers
and prepare them carefully. The exam is merely a production exercise--the student isn’t spending precious
time trying to understand each question and think through a strategy for answering it. Because I can assume
that the students have thoughtfully developed their answers, I can apply a higher standard when I grade the
answers.

Cem Kaner Assessment in the Software Testing Course Page 4

Another important benefit is that it gives the students structure for studying together. I encourage students
to review and discuss each others’ answers.3 The questions focus their work, give them something explicit to
work on.
A third benefit is that this approach allows me to ask complex questions without unfairly disadvantaging
students whose native language is not English. People read at different speeds. Students whose English
language skills are still under development need extra time to read and comprehend essay questions and to
structure their answers. Because they have that extra preparation time, I don’t have make allowances for
them when I grade.

3.2 Source material
Appendix A lists questions that I’ve used in the course.
Appendix B is an instruction / suggestion sheet that I give students with the questions. The sheet includes
two types of guidance:

 How to study for this type of test
 How to answer questions on this type of test.

Appendix C provides analyses and answers for several of the exam questions.

3.3 Risks and Problems
The primary problem with this course’s approach is that many students aren’t used to answering essay
questions and so they deal with them ineffectively. This problem is not unique to computer science students.
For example, teaching first year law students how to answer essay questions is a critical task, repeated in
course after course.4 Many universities publish guidelines for undergraduates on how to study for, and
organize, essay questions.5
The problems that I note here apply broadly to essay-format exams among graduate students in computer
science. For example, at Florida Tech in Fall, 2002, a substantial minority of the population of students
writing the Software Engineering Comprehensive Exam failed or nearly failed the exam because of
ineffective essay-answering strategies that yielded

 weakly structured answers that missed important points or
 shotgun answers (unfocused, not directly responsive to the question).

3.3.1 Weak Structure
Consider the following question as an example:

Define a scenario test and describe the characteristics of a good scenario test. Imagine developing a set
of scenario tests for the Outlining feature of the word processing module of OpenOffice. What research
would you do in order to develop a series of scenario tests for Outlining? Describe two scenario tests
that you would use and explain why each is a good test. Explain how these tests would relate to your
research.

This has several components:
 Define a scenario test
 Describe the characteristics of a good scenario test
 What research would you do in order to develop a series of scenario tests for Outlining?
 Describe two scenario tests you would use.
 Explain why each of the two scenario tests is a good test
 Explain how these two scenario tests would relate to your research

Cem Kaner Assessment in the Software Testing Course Page 5

A well organized answer will have at least six sections, one for each of the bulleted components. You might
have two additional sections, by splitting Describe two scenario tests you would use and Explain why each of
the two scenario tests is a good test into two sections, one for each test.
Without structure, it is easy to miss a section and thereby to lose points.
Students must learn to focus their answer to match the “call of the question” (the specific issues raised in the
question).
It is a safe bet that a substantial portion of the undergraduate or graduate CS students who attend the software
testing class will not yet have sufficiently developed their skills in identifying and responding to the call of
the question.

3.3.2 Shotgun Answers
A student using a shotgun strategy responds with a core dump of everything that seems to be relevant to the
general topic. Much of this information might be correct, but if it is non-responsive to the call of the
question, it is irrelevant and I will ignore it. However, to the extent that irrelevant information is incorrect, if
I notice an error, I will deduct points for it.
Here’s an example of a question that yielded a lot of shotgunning and not enough points:

Imagine that you are an external test lab, and Sun comes to you with OpenOffice. They want you to test
the product. When you ask them what test documentation they want, they say that they want something
appropriate but they are relying on your expertise. To decide what test documentation to give them,
what questions would you ask (up to 7 questions) and for each answer, how would the answer to that
question guide you?

In the course, we looked over a long list of requirements-eliciting questions.6 Students were free to use the
ones we discussed or to supply their own.
The question does not call for definition / discussion of IEEE 829 or for a list of the common test
documentation components. It doesn’t call for a description of test matrices or a discussion of how to create
them. I got these and much more on a recent exam. Unless this information was couched in terms of a
question or the interpretation of the question/answer, it was irrelevant--a waste of the students’ time (and in a
time-limited exam, a tax on the student’s ability to complete the rest of the test in the time available).

3.3.3 Time Management
Students should have fewer exam time management problems when their exams contain only questions from
the study guide. After all, they have (in theory) answered each question and they have a sense of how long
each question takes to answer.
In practice, many students run out of time the first time they take a test like this, because they don’t realize
that time management will be an issue or what to do to manage it. As an example of how to manage a timing
problem, if a student develops a “perfect” answer to an essay question, but discovers that it will take an hour
to write, she will prioritize and reduce the length of the answer in order to fit it within the time available.

3.3.4 Lack of Preparation
I encountered the worst timing problems during my first year of teaching at Florida Tech. I didn’t yet have a
reputation among the students, and few other instructors gave students a list of study questions that included
all of the questions that would actually appear on the exam. As a result, students in my first two courses
didn’t study the particular questions in detail and didn’t develop their own answers. These students
performed badly on their mid-term exams; many of them didn’t come close to finishing the exam because
they had to read, comprehend, and plan an answer for each question rather than recognizing the question and
starting to write the answer they have already prepared.

Cem Kaner Assessment in the Software Testing Course Page 6

3.3.5 Weak Group Preparation
The best way to prepare for these tests is for each student to attempt each question on his own. The first
attempt should be open book with no time limit. After each student has his own answers, he should compare
notes with other students. The diversity of approaches will highlight ambiguities in the question, hidden
assumptions on the part of the student, and muddled, disorganized thinking about the structure and call of the
question. Independent preparation by several students is essential.
Unfortunately, many students form study groups in which they either:

 Divide up the questions. One or two students attempt to answer each question and then report back to
the group. The rest of the students then attempt to memorize the answers.

 Attempt to develop the answers in-group, four or more students arguing and together.
Neither of these approaches works well. There are so many questions in the study list that few (or no)
students can effectively memorize all the answers. As a result, I often see answer fragments, relevant
material mixed with irrelevant (something memorized for a different question), or answers that have been
distorted (such as forgotten words, points made so far out of sequence that they don’t make sense, etc.)
The group-think approach works better but often produces weak answers. The group tends to latch onto the
first answer that appears to make sense. Or it latches onto the answer advocated by the loudest or most
persuasive or most persistent student in the group.
It is much more effective to start from a diverse group of prepared answers, with the people who understand
and can explain why they prepared the answers in they way they did.
I tell students this every term, and every term a significant group of students tries the divide-and-(oops)-
don’t-conquer strategy and the work-only-during-group-study sessions. Most of them learn their lesson the
hard way when they write an unsatisfactory mid-term exam.

3.3.6 Weak Answers Propagate Through the Group
Sometimes, the entire class answers a question in a way that is obviously (to me) mistaken or otherwise sub-
optimal. I’ve seen several class-specific exam answers like this. By class-specific, I mean that a different
class, on encountering the same question, has handled it much better.

3.3.7 Failure to Consult Required Readings
I publish my lecture notes on the web, using a tool called BlackBoard. Along with my lecture notes, I supply
copies of several other articles, some in a folder labeled as Required Reading and others in a folder labeled as
Recommended Reading.
Surprisingly often, students consult the lecture notes and ignore the required readings. I now choose at least
one question that relies on the required readings and not on the lecture, just to remind students (reminder-by-
consequence) that they are supposed to read the required readings.
A more subtle problem arises when a question can be answered to a mediocre degree from the lecture notes,
and much better from the required readings. In that case, the large majority of the class often gives the
mediocre answer. It is tempting to the grader to accept the majority product as the right product.

3.3.8 Excessively Short Lists are Too Easy to Memorize
One safeguard against students memorizing every answer (relying on other students to generate answers for
them) is that there are too many answers to memorize.

3.3.9 Excessively Long Lists and Lists Distributed Too Late Motivate Little Studying
If the list goes to students too late (relative to its length), the list is seen as unreasonable -- impossible -- not
worth paying careful attention to.

Cem Kaner Assessment in the Software Testing Course Page 7

3.3.10 Prioritization is not Student-Driven
An issue raised with the assessment approach used in this course is that it is seen as micromanaging the study
habits of the students. The instructor boils the course down to a relatively short list of questions and the
students study these (and nothing else).
I don’t see this as much of a problem. If I include everything that I think is important in the class, then the
students study a fairly wide range of material.
Left without guidance, students still prioritize, but their prioritization is based more on rumor and those hints
(real or imagined) that they got from the instructor. To some degree, their prioritization is also based on their
interests. Students study things that capture their imagination and often learn a great deal from that. The
exam structure in this course does not encourage people to take long, fascinating tangents. I try to make up
for this, not entirely successfully, with the assignments and bonus point opportunities.

4. Assignments
Appendix D provides sample assignments and grading notes.
The intent of the assignments is to give students practice exercises so they can build skills.
Students are encouraged to test in pairs and to edit each other’s bug reports before filing them in the sample
application’s bug database, such as IssueZilla for OpenOffice.
The assignments are useful as far as they go, but they are inefficient. It takes many students three
assignments before they get reasonably competent in the style of domain analysis that I teach. (They hand in
Assignment 3 about 5 weeks after the start of classes.)
What we need (and are developing) are many more, simpler homework exercises that can be used for
practice. My analogy is to the typical Calculus course. Students do a lot of homework, and learn many
concepts quickly, much more quickly than the testing students are picking up concepts in the testing course.

5. Bonus Assignments
Students can collect up to 10 bonus points, bringing their maximum possible point count to 110%.
In general, I use bonus assignments to encourage students to improve their communication skills and their
system administration skills.
As examples, when we test OpenOffice:

 One student takes responsibility for providing installation and update technical support for the class.
If anyone has problems installing OpenOffice, they go to this student.

 Another student takes responsibility for coaching people in the mechanics of the bug tracking
system.

 Another student or two might make a class-long presentation on a topic of interest. For example, a
student with relevant work experience gave a presentation on failure modes and effects analysis.
Another presentation might profile test tools available at sourceforge.org.

Additionally, students can earn bonus points by reporting bugs and editing bug reports.
Here are the rules I include in the syllabus on bonus point bug reports:

Bug Reporting:
The OpenOffice staff are primarily volunteers, like you. These people are not to be abused.
Bug reports should be written in a respectful tone. If your reports are disrespectful,
sarcastic, or in any other way inappropriate in tone, I will refuse to award any bonus
points for any of your bug reports. Some of these volunteers may reject your reports
unreasonably. They might reject perfectly good (bad) bugs. Or they might respond
sarcastically or disrespectfully. This happens in industry too. You'll have to learn to deal
with it. (But don't respond in kind.)

Cem Kaner Assessment in the Software Testing Course Page 8

Submitting bug reports is voluntary, but every report you submit will be reviewed and
commented on by the OpenOffice staff. This is an important training opportunity.
I will award bonus points (up to 5% of your grade can be for bug reports or bug replications)
for bug reports. Here are my standards for awarding bonus points for bugs.

1. Many of the bug reports in the IssueZilla database don't meet my standards. Many
people who work on open source projects never had training in testing. But you do
have that training, and the point of this exercise is to give you experience writing
bug reports at a professional level. Therefore I will hold you to a professional
standard, not to the standard of a part-time volunteer. I suspect that several bugs that
are sent to me will not be awarded bonus points.

2. Reports of already-reported bugs will not qualify for a bonus.
3. I will award UP TO 1 bonus point per bug report (to a maximum total of 5 points

across all bugs submitted). If you developed an acceptable bug report as a group of
N people, you will get 1/N points each for that bug.

4. I will not base the decision on personal demonstrations of bugs. If the bug report, as
written seems unclear, confusing, or insignificant, it does not qualify. The bonus is
for the report, not for the bug.

5. I will not review every bug in the database. I will only look at bugs that you ask me
to look at. If I have to wade through mediocre or poor bugs from you, I will give up,
even if that means skipping potentially worthy ones. Therefore, please exercise care
in pointing me to your submissions. Only send me to your good ones.

Bug Reviews:
The O-O bug database has many bugs that have not been replicated or analyzed. They need
these replicated and, often, explained in more detail.
I will award bonus points (up to 5% of your grade can be for bug reports or bug replications)
for bug reviews.

1. Each well-reviewed bug is worth up to one-half bonus point (to a maximum of 5). If
you do an acceptable review as a group of N people, you will get 1/2N points each
for that bug.

2. I will not review every bug in the database. I will only look at bugs that you ask me
to look at. If I have to wade through mediocre or poor reviews from you, I will give
up, even if that means skipping potentially worthy ones. Therefore, please exercise
care in pointing me to your work. Only send me to your good ones.

Assignment 2 presents bug review standards in more detail.
Bug reports and bug reviews that are done as part of an assignment are not eligible for
bonus credit.

6. Quizzes
I also use occasional quizzes -- unannounced tests that are worth about 1% of the final grade each. I mark
them pass/fail.
I use the quiz to focus the students’ attention. For example, sometimes I want them to puzzle through a new
concept in class or to apply something that we’ve talked about in the last few lectures. Occasionally, I use a
quiz or a brief, hand-in homework assignment, to help me understand what information has been successfully
conveyed to most of the class.

Cem Kaner Assessment in the Software Testing Course Page 9

7. Closing Notes, Including Plans for Change
Overall, I think the approach of using evaluation to drive students’ learning experiences has been successful.
However, there are some areas for improvement in the course:

 Student performance on mid-terms is unnecessarily weak. The study guide helps those who rely on
it, but too many students ignore it until their mid-term wake-up call. Next time that I teach the
course, I’ll try a lecture well before the midterm on study strategies (we’ve done that already, even
with a presentation by a previous student), that shows how I grade test questions. I’ll probably start
with a quiz, using a question from a prior exam, so that students will have thought intensely about
the question before I show how I grade it.

 We’re experimenting with rubrics. These might help some students improve the structure and
approach to their assignments.

 We need more practice materials, a series of exercises that run from simple to complex, that have
students work through the routine aspects of each testing technique. My lab has been working on
developing these but we don’t have a good enough collection yet.

 The course relies on readings and lecture notes. There isn’t a course text because I haven’t yet found
a good course text. Probably next time I teach, I’ll require Kaner / Bach / Pettichord’s Lessons
Learned in Software Testing and perhaps Whittaker’s How to Break Software or Hendrickson’s
lecture notes on Bug Hunting. Over the long term, though, we need to develop a traditional textbook.

Appendix A: Exam Study Guide Questions
Note: I don’t include all of the following questions in every list and I change the list from year to year. I
cover different topics from year to year and some of these will be irrelevant in a given year.
It’s important to keep the workload manageable. Depending on your school’s culture, you might make your
list longer or shorter--but don’t underestimate your students. Many students will rise to a challenge,
especially if they believe you are genuinely interested in their work.
The exams are closed book.

Timing, Coverage and Difficulty of the Exam
The questions in each section below vary in difficulty and length.
In drafting an exam, I answer each question that is a serious candidate for inclusion in the exam and clock
my answer. To clock the answer, I write the answer out once, to get my thinking and structure down. Then I
write a second draft and time that. (Remember, students have been drafting their answers in the course of
studying for the exam, so on the exam, they are generating the Nth draft answer.) I allow students twice as
long as it took me to hand write my second draft. For a 75 minute exam, I cumulate questions to total 55-65
minutes, leaving the extra 10-20 minutes for students who write slowly. For example, the exam might
include 4 definitions, 4 short answers and 2 long answers. This particular exam offers 100 points worth of
questions, but some of my 75 minute exams are out of 95 or 105 -- the total count is less important than the
estimated time and difficulty of the complete product.
I rate questions as Easy, Medium, and Hard and drive the difficulty of the exam by the mix of the ratings.
Finally, I pick the questions in a way that reasonably represents what we covered in class. In some cases, the
questions rely on explicitly required readings rather than on material we covered in the lecture. In some
cases, the questions on the list cover material that I don’t actually reach in time for the exam. These questions
are excluded from the exam.

Cem Kaner Assessment in the Software Testing Course: Appendix A Page 10

Ambiguity
One of the advantages of circulating the questions in advance is that the students can challenge them before
the exam. Surprisingly, a question might be perfectly clear to the students in one semester but ambiguous to
the students in the next semester.
I encourage students to draw ambiguities to my attention. I resolve the ambiguities by sending an electronic
mail message to the students. I may exclude the question from the exam if the correction came too late or the
answer to the corrected question is too complex.

Part 1: Definitions (5 points each)
Definitions should take 2-3 minutes each. In drafting the exam, I allow about 3 minutes per definition.

1. Domain testing
2. Equivalence class
3. Boundary condition
4. Best representative
5. Fault vs. failure vs. defect
6. Function testing
7. Regression testing
8. Specification-based testing
9. Power of a test
10. Public bugs vs private bugs
11. Prevention costs
12. Appraisal costs
13. Internal vs. external failure costs
14. Oracle
15. Exploratory testing
16. Waterfall lifecycle
17. Lifecycle model
18. Evolutionary development
19. Line (or statement) coverage
20. Boundary chart
21. Software quality
22. Black box testing
23. Glass box / white box testing
24. Risk-based testing
25. Corner case
26. Finite state machine
27. Stochastic testing
28. Dumb monkey
29. State
30. Combination testing

Cem Kaner Assessment in the Software Testing Course: Appendix A Page 11

31. All-pairs combination testing
32. Input constraints
33. Storage constraints
34. Smart Monkey
35. State variable
36. Value of a state variable
37. Testing project plan
38. Test matrix
39. Manual test script
40. Attribute to be measured
41. Surrogate measure
42. Defect arrival rate
43. Defect arrival rate curve (Weibull distribution)
44. Stress testing
45. Computation constraints
46. Output constraints

Part 2: Short Answers (10 points each)
Short answers should take about 5 minutes to answer. In planning the timing of the exam, I allow about 6
minutes per short answer question.

1. Give two examples of defects you are likely to discover and five examples of defects that you are
unlikely to discover if you focus your testing on line-and-branch coverage.

2. Give three different definitions of “software error.” Which do you prefer? Why?
3. Ostrand & Balcer described the category-partition method for designing tests. Their first three steps

are:
(a) Analyze
(b) Partition, and
(c) Determine constraints

Describe and explain these steps.
4. A program asks you to enter a password, and then asks you to enter it again. The program compares

the two entries and either accepts the password (if they match) or rejects it (if they don’t). You can
enter letters or digits. How many valid entries could you test? (Please show and/or explain your
calculations.)

5. A program is structured as follows:
 It starts with a loop, the index variable can run from 0 to 20. The program can exit the loop

normally at any value of the index.
 Coming out of the loop, there is a case statement that will branch to one of 10 places

depending on the value of X. X is a positive, non-zero integer. It can have any value from 1
to MaxInt.

 In 9 of the 10 cases, the program executes X statements and then goes into another loop. If X
is even, the program can exit the loop normally at any value of its index, from 1 to X. If X is

Cem Kaner Assessment in the Software Testing Course: Appendix A Page 12

odd, the program goes through the loop 666 times and then exits. In the 10th case, the
program exits.

Ignore the possibility of invalid values of the index variable or X. How many paths are there through
this program? Please show and/or explain your calculations.

6. Consider a program with two loops, controlled by index variables. The first variable increments (by
1 each iteration) from -3 to 20. The second variable increments (by 2 each iteration) from 10 to 20.
The program can exit from either loop normally at any value of the loop index. (Ignore the
possibility of invalid values of the loop index.)

 If these were the only control structures in the program, how many paths are there through
the program?

 If the loops are nested
 If the loops are in series, one after the other

 If you could control the values of the index variables, what test cases would you run if you
were using a domain testing approach?

 Please explain your answers with enough detail that I can understand how you arrived at the
numbers.

7. List and briefly explain three strengths of the waterfall lifecycle.
8. List and briefly explain three strengths of the evolutionary lifecycle.
9. Describe the characteristics of a good scenario test.
10. List and explain four claimed strengths of manual scripted tests and four claimed weaknesses.
11. List (and briefly describe) four different missions for a test group. How would your testing strategy

differ across the four missions?
12. Distinguish between using code coverage to highlight what has not been tested from using code

coverage to measure what has been tested. Describe some benefits and some risks of each type of
use. (In total, across the two uses, describe three benefits and three risks.)

13. In lecture, I used a minefield analogy to argue that variable tests are better than repeated tests.
Provide five counter-examples, contexts in which we are at least as well off reusing the same old
tests.

14. List and describe five different dimensions (different “goodnesses”) of “goodness of tests”.
15. Describe two difficulties and two advantages of state-machine-model based testing.
16. Can you represent a state machine graphically? If so, how? If not, why not?
17. Explain the relationship between graph traversal and our ability to automate state-model-based tests.
18. Compare and contrast the adjacency and incidence matrices. Why would you use one instead of the

other?
19. What does it tell us about the system under test if the model of system (accurately) shows weak

connectivity?
20. What is the state explosion problem and what are some of the ways that state-model-based test

designers use to cope with this problem?
21. Consider the variable, “synchronize ends” in this dialog from OpenOffice Presentation. “Synchronize

ends” can be checked or unchecked. Are these two values distinct? Justify your answer.

Cem Kaner Assessment in the Software Testing Course: Appendix A Page 13

Part 3: Long Answers (20 points each)
1. Imagine testing a date field. The field is of the form MM/DD/YYYY (two digit month, two digit

day, 4 digit year). Do an equivalence class analysis and identify the boundary tests that you would
run in order to test the field. (Don’t bother with non-numeric values for these fields.)

2. I, J, and K are signed integers. The program calculates

 K = IntegerPartOf (SquareRoot (I*J))
For this question, consider only cases in which you enter integer values into I and J. Do an
equivalence class analysis from the point of view of the effects of I and J (jointly) on the variable K.
Identify the boundary tests that you would run (the values you would enter into I and J).
NOTE: Variations on this question consider:

K = I * J
K = I / J

3. Ostrand & Balcer described the category-partition method for designing tests. Their first three steps
are:

1. Analyze
2. Partition, and
3. Determine constraints

 Apply their method to this function:
I, J, and K are unsigned integers. The program calculates K = IntegerPartOf (SquareRoot (I*J)).

 For this question, consider only cases in which you enter integer values into I and J.
Do an equivalence class analysis from the point of view of the effects of I and J (jointly) on the
variable K.

4. The Spring and Fall changes between Standard and Daylight Savings time creates an interesting
problem for telephone bills. Focus your thinking on the complications arising from the daylight
savings time transitions. Create a table that shows risks, equivalence classes, boundary cases, and
expected results for a long distance telephone service that bills calls at a flat rate of $0.05 per minute.
Assume that the chargeable time of a call begins when the called party answers, and ends when the
calling party disconnects.

5. Describe a traceability matrix.
 How would you build a traceability matrix for the word processor in OpenOffice?
 What is the traceability matrix used for?

Cem Kaner Assessment in the Software Testing Course: Appendix A Page 14

 What are the advantages and risks associated with driving your testing using a traceability
matrix?

 Give examples of advantages and risks that you would expect to deal with if you used a
traceability matrix for the word processor. Answer this in terms of two of the main features
of the word processor. You can choose which two features.

6. What is regression testing? What are some benefits and some risks associated with regression
testing? Under what circumstances would you use regression tests?

7. Why is it important to design maintainability into automated regression tests? Describe some design
(of the test code) choices that will usually make automated regression tests more maintainable and
explain (briefly) why each choice increases maintainability.

8. Suppose that you find a reproducible failure that doesn’t look very serious.
 Describe three tactics for testing whether the defect is more serious than it first appeared.
 As a particular example, suppose that the display got a little corrupted (stray dots on the

screen, an unexpected font change, that kind of stuff) in OpenOffice’s word processor when
you drag the mouse across the screen. Describe three follow-up tests that you would run, one
for each of the tactics that you listed above.

9. Imagine testing a file name field. For example, go to an Open File dialog, you can enter something
into the field. Do a domain testing analysis: List a risk, equivalence classes appropriate to that risk,
and best representatives of the equivalence classes. For each test case (use a best representative),
briefly explain why this is a best representative. Keep doing this until you have listed 12 best-
representative test cases.

10. Suppose that you had access to the OpenOffice source code and the time / opportunity to revise it.
Suppose that you had access to the source code and that you decided to do a diagnostics-based high
volume automated test strategy to test OpenOffice Presentation’s treatment of copying and pasting of
slides.

 What diagnostics would you add to the code, and why?
 Describe 3 potential defects, defects that you could reasonably imagine would be in the

software that handles copy/paste of slide, that would be easier to find using a diagnostics-
based strategy than by using a lower-volume strategy such as exploratory testing, spec-based
testing, or domain testing.

11. Consider testing the OpenOffice function that lets you save a document in HTML format.
 How would you develop a list of risks for this capability? (If you are talking to people, who

would you ask and what would you ask them?) (If you are consulting books or records or
databases, what are you consulting and what information are you looking for in it?)

 Why is this a good approach for building a list of risks?
 List 10 risks associated with this function.
 For each risk, briefly (very briefly) describe a test that could determine whether there was an

actual defect.
Note: In practice, I probably won’t ask for 10 risks on the exam. On the exam, I’ll ask for fewer,
perhaps five or seven. The review questions ask for more because I would rather have students
think of a longer list and then give their best several items on the exam. If I told them to prepare
a list of seven and then asked for seven on the exam, many students would struggle to remember
the last two or three examples. If they prepare for 10, they are more likely to be able to give 7 on
the exam than if I ask them to prepare for 7.

12. Consider testing the OpenOffice function that lets you enter data into a table in the word processor.

Cem Kaner Assessment in the Software Testing Course: Appendix A Page 15

 How would you develop a list of risks for this capability? (If you are talking to people, who
would you ask and what would you ask them?) (If you are consulting books or records or
databases, what are you consulting and what information are you looking for in it?)

 Why is this a good approach for building a list of risks?
 List 10 risks associated with this function.
 For each risk, briefly (very briefly) describe a test that could determine whether there was an

actual defect.
13. Consider testing the OpenOffice function that lets you enter data into a spreadsheet on a Presentation

slide.
 How would you develop a list of risks for this capability? (If you are talking to people, who

would you ask and what would you ask them?) (If you are consulting books or records or
databases, what are you consulting and what information are you looking for in it?)

 Why is this a good approach for building a list of risks?
 List 10 risks associated with this function.
 For each risk, briefly (very briefly) describe a test that could determine whether there was an

actual defect.
14. Imagine that you were testing the feature, Save With Password in the OpenOffice word processor.

 Explain how you would develop a set of scenario tests that test this feature.
 Describe a scenario test that you would use to test this feature.
 Explain why this is a particularly good scenario test.

15. Imagine that you were testing the feature, Save With Password in the OpenOffice word processor.
 Explain how you would develop a set of soap operas that test this feature.
 Describe one test that might qualify as a soap opera.
 Explain why this is a good soap opera test.

16. Imagine that you were testing the feature, Insert Object in the OpenOffice Presentation module.
 Explain how you would develop a set of scenario tests for this feature.
 Describe a scenario test that you would use to test this feature.
 Explain why this is a particularly good scenario test.

17. Define a scenario test and describe the characteristics of a good scenario test. Imagine developing a
set of scenario tests for the Outlining feature of the word processing module of OpenOffice. What
research would you do in order to develop a series of scenario tests for Outlining? Describe two
scenario tests that you would use and explain why each is a good test. Explain how these tests would
relate to your research.

18. (The following statement is not true, but pretend it is for exam purposes.) Sun has just announced
that they will include email support in Release 2.0 of the StarOffice product, which they will ship in
November, 2003. They announce that in the first implementation, the lists of new and saved
messages will be displayed in spreadsheet format, based on the existing spreadsheet code.

 List and briefly explain 5 risk factors that you would expect to find associated with the
spreadsheet interface to the email database. (Refer to Amland’s paper for discussion of risk
factors.)

 For each risk factor, predict 2 defects that could arise in the spreadsheet interface part of the
2.0 project. By “predict”, I mean name and describe the potential defect, and explain why
that particular risk factor makes this defect more likely.

Cem Kaner Assessment in the Software Testing Course: Appendix A Page 16

19. We are going to do some configuration testing on the OpenOffice word processor. We want to test it
on

 Windows 95, 98, and 2000 (the latest service pack level of each)
 Printing to an HP inkjet, a LexMark inkjet, and a Xerox laser printer
 Connected to the web with a dial-up modem (28k), a DSL modem, and a cable modem
 With a 640x480 display and a 1024x768 display

 How many combinations are there of these variables?
 Explain what an all-pairs combinations table is
 Create an all-pairs combinations table. (Show at least some of your work.)
 Explain why you think this table is correct.

20. Imagine that you are an external test lab, and Sun comes to you with OpenOffice. They want you to
test the product. When you ask them what test documentation they want, they say that they want
something appropriate but they are relying on your expertise. To decide what test documentation to
give them, what questions would you ask (up to 7 questions) and for each answer, how would the
answer to that question guide you?

21. (The following statement is not true, but pretend it is for exam purposes.) OpenOffice.Org has just
announced that they will include built-in support for digital cameras and digital video recorders in
the Word Processing module. They announce that the word processor will have features that allow
users to download single images and digitally stored movies from supported cameras and recorders.
Users will be able to place a picture or movie in a document and view the picture or a movie while
editing the document and they will be able to see the picture and the starting frame of the movie on
the document printout. Users will be able to edit the pictures or movies, such as by cropping them,
stretching or resizing them, changing their colors, or imposing text or other graphics on the image.

 List and briefly explain 5 risk factors that you would expect to find associated with the new
support for digital pictures and video. (Refer to Amland’s paper for discussion of risk
factors.)

 For each risk factor, predict 2 defects that could arise in the support for digital pictures and
video. By “predict”, I mean name and describe the potential defect, and explain why that
particular risk factor makes this defect more likely.

22. The oracle problem is the problem of finding a method that lets you determine whether a program
passed or failed a test.
Suppose that you were doing automated testing of spell-checking in the OpenOffice word processor.
Describe three different oracles that you could use or create to determine whether this feature was
working. For each of these oracles,

 identify a bug that would be easy to detect using the oracle. Why would this bug be easy to
detect with this oracle? and

 identify another bug that your oracle would be more likely to miss. Why would this bug be
harder to detect with this oracle?

23. You are using a high-volume random testing strategy for the OpenOffice word processing program.
You will evaluate results by using an oracle.

 Consider testing the spell-checking feature using oracles. How would you create an oracle
(or group of oracles)? What would the oracle(s) do?

 Now consider the placement of footnotes at the bottom of the page. How would you create
an oracle (or group of oracles) for this? What would the oracle(s) do?

Cem Kaner Assessment in the Software Testing Course: Appendix A Page 17

 Which oracle would be more challenging to create or use, and why?
24. You are using a high-volume random testing strategy for the OpenOffice Presentation program will

evaluate results by using an oracle.
 Consider inserting a spreadsheet into a slide. When you enter values into the spreadsheet, you can

insert functions into the cells of the spreadsheet. Think about testing those functions using oracles.
How would you create an oracle (or group of oracles)? What would the oracle(s) do?

 Consider entering a chart into a slide. Once you have entered data into the chart, OpenOffice draws
the chart. Think about testing the chart as drawn to determine whether it properly shows the chart
data. How would you create an oracle (or group of oracles)? What would the oracle(s) do?

 Which oracle would be more challenging to create or use, and why?
25. Imagine that you were testing the spellchecking feature of the OpenOffice Word Processor. Describe

four examples of each of the following types of attacks that you could make on this feature, and for
each one, explain why your example is a good attack of that kind.

 Input constraint attacks
 Output constraint attacks
 Storage constraint attacks
 Computation constraint attacks.

(Notes for you while you study. Refer to Jorgensen / Whittaker’s paper on how to break software.
Don’t give me two examples of what is essentially the same attack. In the exam, I will not ask for all
16 examples, but I might ask for 4 examples of one type or two examples of two types, etc.)

26. Imagine that you were testing the OpenOffice word processor feature that lets you save a document
in HTML format.
Describe four examples of each of the following types of attacks that you could make on this feature,
and for each one, explain why your example is a good attack of that kind.

 Input constraint attacks
 Output constraint attacks
 Storage constraint attacks
 Computation constraint attacks.

(Notes for you while you study. Refer to Jorgensen / Whittaker’s paper on how to break software.
Don’t give me two examples of what is essentially the same attack. In the exam, I will not ask for all
16 examples, but I might ask for 4 examples of one type or two examples of two types, etc.)

27. What is the Defect Arrival Rate? Some authors model the defect arrival rate using a Weibull
probability distribution. Describe this curve and briefly explain three of the claimed strengths and
three of the claimed weaknesses or risks of using this curve.

28. The following group of slides are from Windows Paint 95. Please don’t spend your time replicating
the steps or the bug. (You’re welcome to do so if you are curious, but I will design my marking
scheme to not give extra credit for that extra work.)
Treat the steps that follow as fully reproducible. If you go back to ANY step, you can reproduce it.
For those of you who aren’t familiar with paint programs, the essential idea is that you lay down
dots. For example, when you draw a circle, the result is a set of dots, not an object. If you were using
a draw program, you could draw the circle and then later select the circle, move it, cut it, etc. In a
paint program, you cannot select the circle once you’ve drawn it. You can select an area that includes
the dots that make up the circle, but that area is simply a bitmap and none of the dots in it have any
relationship to any of the others.

Cem Kaner Assessment in the Software Testing Course: Appendix A Page 18

I strongly suggest that you do this question last because it can run you out of time if you have not
thought it through carefully in advance.

Here’s the opening screen. The background is white. The first thing that we’ll do is select the Paint Can
We’ll use this to lay down a layer of grey paint on top of the background. Then, when we cut or move an
area, we’ll see the white background behind what was moved.

Here’s the screen again, but the background has been painted gray.
The star in the upper left corner is a freehand selection tool. After you click on it, you can trace around any
part of the picture. The tracing selects that part of the picture. Then you can cut it, copy it, move it, etc.

This shows an area selected with the freehand selection tool. The bottom right corner is selected. (The dashed
line surrounds the selected area.)

Cem Kaner Assessment in the Software Testing Course: Appendix A Page 19

NOTE: The actual area selected might not be perfectly rectangular. The freehand tool shows a rectangle that
is just big enough to enclose the selected area. For our purposes, this is not a bug. This is a design decision
by Microsoft.

Next, we’ll draw a circle (so you can see what’s selected), then use the freehand select tool to select the area
around it.
When you use the freehand selection tool, you select an area by moving the mouse. The real area selected is
not a perfect rectangle. The rectangle just shows us where the selected area is.

Now we cut the selection. (To do this, press Ctrl-X.)
The jagged border shows exactly the area that was selected.

Next, exit the program, restart it, color the background grey, draw the circle, select the area around the circle
and drag it up and to the right.

Cem Kaner Assessment in the Software Testing Course: Appendix A Page 20

This time, we’ll try the Rectangular Selection tool.
With this one, if you move the mouse to select an area, the area that is actually selected is the smallest
rectangle that encloses the path that your mouse drew.
So, exit the program, start it up, color the background, draw a circle, click the Rectangular Selection tool,
select the area around the circle and move it up. It works.
This works.

Well, this was just too boring, because everything is working. When you don’t find a bug while testing a
feature, one tactic is to keep testing the feature but combine it with some other test.
In this case, we’ll try Zooming the image. When you zoom 200%, the picture itself doesn’t change size, but
the display doubles in size. Every dot is displayed as twice as tall and twice as wide.
So we exit the program, start it up, color the background grey, draw the circle, and then . . .

Bring up the Custom Zoom dialog, and select 200% zoom, click OK.

Cem Kaner Assessment in the Software Testing Course: Appendix A Page 21

It worked. The paint area is displayed twice as tall and twice as wide. We’re looking at the bottom right
corner. To see the rest, we could move the scroll bars up or left.

So, we select part of the circle using the freehand selection tool. We’ll try the move and cut features.
Cutting fails.
When we try to cut the selection, the dashed line disappears, but nothing goes away.

Exit the program, start again, color the background, draw the circle, zoom to 200%, select the area.
Drag the area up and to the right. It works.

Exit the program, start again, color the background, draw the circle, zoom to 200%, select the area.
Now try this. Select the area and move it a bit. THEN press Ctrl-C to cut. This time, cutting works.

Cem Kaner Assessment in the Software Testing Course: Appendix A Page 22

Exit the program, start again, color the background, draw the circle, zoom to 200%, and this time, grow the
window so you can see the whole drawing area.

Now, select the circle. That seems to work.

Cem Kaner Assessment in the Software Testing Course: Appendix A Page 23

But when you press Ctrl-X to cut the circle, the program cuts the wrong area.

Now, write a bug report. I want two sections:

 The Problem summary (or title)
 The Problem Description (how to reproduce the problem)

Additionally, please describe three follow-up tests that you would run with this bug

Cem Kaner Assessment in the Software Testing Course: Appendix B Page 24

APPENDIX B: The Study Guide that I Give Students
• Your test will be sampled from a list of questions that I give you in advance. Those questions

include definitions, short answer and long answer questions. Solutions might require short
essays, mathematical derivations, or code fragments.

• You may not use any reference materials during the test (closed book test).
• I recommend that you study with one or more partners. 3-5 people is a good sized group. 8 is

too many.
• The best way to prepare for these tests is to attempt each question on your own. Your first

attempt for each question should be open with no time limit. Check the lecture notes AND the
required readings.

• AFTER you have tried your own answers, compare notes with your friends.
• Working with others will help you discover and work through ambiguities before you take the

test. If a question is unclear, send me a note before the test. If you tell me early enough, I can
fix it. If a question takes too long to answer, send me a note about that too.

• When you write the test, keep in mind that I am reading your answer with the goal of finding
reasons to give you points:

• If the question contains multiple parts, give a separate answer for each part.
• If a question asks about “some”, that means at least two. I normally expect three items

in response to a “some”. Similarly if the question asks for a list, I am expecting a list of
at least three.

• Be aware that different words in questions have different meanings. For example, each
of the following words calls for a different answer: identify, list, define, describe,
explain, compare, contrast. If I ask you to list and describe some things, give me a
brief identification (such as a name) of each and then a description for each one.

• If you find it hard to define or describe something, try writing your answer around an
example.

• If you are asked to describe the relationship among things, you might find it easiest to
work from a chart or a picture. You are not required to use a diagram or chart (unless I
ask for one), but feel free to use one if it will help you get across your answer.

• If I ask you to describe or define something that is primarily visual (such as a table or a
graph), your answer will probably be easier to write and understand if you draw an
example of what you are defining or describing.

• If I ask you for the result of a calculation, such as the number of paths through a loop, show
your calculations or explain them. Let me understand how you arrived at the answer.

• If I ask you to analyze something according to the method described in a particular paper or
by a particular person, I expect you to do it their way. If I ask you to describe their way, do so.
If I ask you to apply their way, you don’t have to describe it in detail, but you have to do the
things they would do in the order they would do them, and you have to use their vocabulary to
describe what you are doing.

• The test is time-limited—75 minutes. Plan to spend no more than 4 minutes on any definition,
no more than 10 minutes on any short answer, and no more than 15 minutes on any long
answer. Spend less on most answers. Suppose the test has 4 definitions (20 points), 2 short
answers (20 points), and 3 long answers (60 points). You should plan to spend, on average,
about 3 minutes per definition, about 8 minutes per short answer, and about 12 minutes per
long answer (total = 64 minutes). Use the remaining 11 minutes to check your work.

• Pick the order of your answers. If you spend too long on definitions, start writing your long
answers first. If you are nervous, start with the questions you find easiest to answer.

Cem Kaner Assessment in the Software Testing Course: Appendix B Page 25

Study Guide Suggestions -- Page 2
• Be aware of some factors that, in general, bias markers. These are generalizations, based on

research results. I try, of course, to be unbiased, but it’s a good idea to keep these in mind
with ANY grader for ANY exam:

• Exams that are hard to read tend to get lower grades. Suggestions: Write in high
contrast ink (such as black, medium). Write in fairly large letters. Skip every second
line. Don’t write on the back of the page. If your writing is illegible, print. If I can’t read
something you wrote, I will ignore it.

• Start a new question on a new page. More generally, leave lots of space on the page.
This gives you room to supplement or correct your answer later (when you reread the
exam before handing it in) and it gives me room to write comments on the answer, and
it makes the answer easier to read.

• Answers that are well-organized are more credible. Suggestions: If the question has
multiple parts, start each part on a new line, and identify each part at its start. In a list,
start each list item on a new line—maybe bullet the list. For example, consider the
question: “What is the difference between black box and white box testing? Describe
the advantages and disadvantages of each.” You could organize this with five
headings:
• Difference between black and white
• Advantages of black box
• Disadvantages of black box
• Advantages of white box
• Disadvantages of white box

• Don’t answer what has not been asked. For example, if I ask you to define one thing,
don’t define that and then give me the definition of something related to it. If you do,
(a) I won’t give you extra credit, (b) I’ll think that you don’t know the difference between
the two things, and (c) if you make a mistake, I’ll take off points.

• Give the number of items requested. For example, if I ask for two scenario tests, don’t
give one or three. If you give one, you miss points. If you give three, I will either grade
the first two and ignore the third (this is my normal approach) or grade the first two
that I happen to read (whatever their order on the page) and ignore the third. I will
never read the full list and grade what I think are the best two out of three.

Additional points to consider.
• Beware of simply memorizing some points off a slide. If I think you are giving me a memorized

list without understanding what you are writing, I will ruthlessly mark you down for
memorization errors. In general, if you are repeating a set of bullet points, write enough detail
for them that I can tell that you understand them.

• Use a good pen. Lawyers and others who do lots of handwriting buy expensive fountain pens
for a reason. The pen glides across the page, requiring minimal pressure to leave ink. If you
use a fountain pen, I suggest a medium point (write large) to avoid clogging. Also try gel pens
or rollerballs. Get one that you can write with easily, to avoid writer’s cramp. Basic ballpoints
are very hard on you. Look at how tightly you hold it and feel how hard you press on the page.

Cem Kaner Assessment in the Software Testing Course: Appendix C Page 26

Appendix C Grading the Exam
Here are examples of how I have graded exam questions. These notes are a bit cleaned up, to make them
understandable to another reader. However, I’ve left in several discussions that I inserted in my grading notes
at the time that I graded the question.

• Most of these are about how to grade the question
• Others are about what will have to be taught in the future, or provided in reference materials, to help

students achieve better grades next time.
• I often include reference material or lists in my grading notes. These are often there simply to jog my

memory. Sometimes, however, they are there to remind me of what I have to treat as acceptable. The
problem is that students, relying on reputable sources (including other courses) will give answers
that, in my humble opinion, are mistaken or ridiculous. I will accept many of these answers even
though I disagree with them, but to maintain grading consistency, I need a list of what I will accept
and what I will not accept. Otherwise, my tolerance of some of these answers will vary too much
with my mood.

The critical features of my grading structure (what you’ll always see in my working notes) are:
 Table format, with one column for each point-deserving type of information. (One row per student.)

For all but the most trivial questions, I actually fill in the table for each question. This gives me
detailed information about each student’s performance on each question, which I use to good
advantage when a student comes to me to question her grade.

 For most questions, including all complex questions, I show the points available within the column
on the column itself.

 An outline of a sufficient answer.
 On a complex question, I will often paste in a list or discussion from lecture notes or one of the

readings.
Suppose that a question is worth 20 points.

 In the columns, I might allow up to 30 points. This is primarily because different people legitimately
approach the same question in different ways and so my grading structure has to allow for this.

 No matter what the student’s total point count is, I sometimes reserve the 20th point for style and
organization. That is, you can get 19/20 based on the standard point count, but I won’t give a perfect
grade unless I think the answer is well written. This is an especially common decision when the total
of available points is beyond 20, and so a disorganized answer that covers lots of ground would
otherwise get a perfect grade.

 Also, some questions are just too hard. I might allow 1 or 2 points merely for attempting the
question.

 One of my frequent columns is “clue.” This is a source of discretionary points. I define the
discretionary rule on a question-by-question basis. Some examples:

o If I allow up to 1 point for Clue, the default is 0 points. If the student’s answer shows more
insight than I think is reflected in the point count for the answer, I will raise the grade by 0.5
or 1 points.

o If I allow up to 2 points for Clue, the default is probably 0 points, but the most common
score is probably 1 point.

Definitions 5 points each

Cem Kaner Assessment in the Software Testing Course: Appendix C Page 27

Power of a test Probability notion If bug is there Ability to reveal bug Stat comparison Grade

Power of a test.
If two tests are potentially capable of exposing the same type of defect, one test is more powerful if it is more
likely to expose the defect.

• likelihood of revealing (or ability to reveal) a defect if the defect is there <I give a max of 3.5/5 if
the answer doesn’t point out that this depends on whether the bug is there.>

• if two tests can reveal the same defect equally well, the more powerful test can also reveal other
defects

• analogous to the concept of statistical power

Exploratory
testing

Test and learn
in parallel

about product, risks,
market, test methods

Don't follow pre-
existing detailed plan

Whittaker's
attacks

Other Final /
5

Exploratory Testing involves simultaneous learning, testing, evaluating, planning, and reporting.
Alternative answer: simultaneous testing and learning, plus mention of Whittaker's attacks. We discuss How
to Break Software in class. In a different class, the appropriate source of examples might come from
Hendrickson’s Bug Hunting slides, etc.

Storage constraints

[Note to reader: the concept of “storage constraints” comes from a paper by Whittaker & Jorgenson,
that was expanded in Whittaker’s book, How to Break Software. We look at four fundamental types
of constraints, input constraints, output constraints, storage constraints, and computational
constraints. Many bugs are caused by a programmer’s failure to consider the possibility of violation
of one of these types of constraints.]
I’d like to see something about data structures. I expect to see discussion of limitation of storage in
terms of the types of data that are stored or the place of storage, not input/output/computation
overflows. The attacks on storage are attacks on the data structure, how the data is stored.
Future notes: We need the additional details available Why Software Fails for this to be a good question.
From James Whittaker and Alan Jorgensen’s (2000) paper, How to Break Software

“Data is the lifeblood of software; if you manage to corrupt it, the software will eventually
have to use the bad data and what happens then may not be pretty. It is worthwhile to
understand how and where data values are established.

“Essentially, data is stored either by reading input and then storing it internally or by storing
the result of some internal computation. By supplying input and forcing computation, we
enable data flow through the application under test. The attacks on data follow this simple
fact as outlined in attacks 12-14. However, without access to the source code, many testers
do not bother to consider these attacks. We believe, though, that useful testing can be done
even though specifics of the data implementation are hidden. We like to tell our students to
practice “looking through the interface.” In other words, take note of what data is being
stored while the software system is in use. If data is entered on one screen and visible on

Cem Kaner Assessment in the Software Testing Course: Appendix C Page 28

another, then it is being stored. Information that is available at any time is being stored.

“Some data is easy to see. A table structure in a word processor is one such example in
which not only the data but the general storage mechanism is displayed on the screen.
Some data is hidden behind the interface and requires analysis to discover its properties.

“Once the nature of the data being stored is understood, try to put yourself in the position of
the programmer and think of the possible data structures that might be used to store such
data. The more that programming and data structures are understood, the easier it will be to
execute the following attacks. The more completely you understand the data you are testing,
the more successful the attacks will be at finding bugs.

“Twelfth attack: Apply inputs using a variety of initial conditions

Inputs are often applicable in a variety of circumstances. Saving a file, for example, can be
performed when changes have been made, and it can also be performed when no changes
have been made. Testers are wise to apply each input in a number of different
circumstances to account for the many such interactions that users will encounter when
using the application.

“Thirteenth attack: Force a data structure to store too many/too few values

“There is an upper limit on the size of all data structures. Some data structures can grow to
fill the capacity of machine memory or hard disk space and others have a fixed upper limit.
For example, a running monthly sales average might be stored in an array bounded at 12 or
fewer entries, one for each month of the year.

“If you can detect the limits on a data structure, try to force too many values into the
structure. If the number is particularly large, the developer may have been sloppy and not
programmed an error case for overflow.

“Special attention should be paid to structures whose limits fall on the boundary of data
types 255, 1023, 32767 and so on. Such limits are often imposed simply by declaration of
the structure’s size and very often lack an overflow error case.

“Underflow is also a possibility and should be tested as well. This is an easy case, requiring
only that we delete one more element than we add. Try deleting when the structure is empty,
then try adding an element and deleting two elements and so on. Give up if the application
handles 3 or 4 such attempts.

“Fourteenth attack: Investigate alternate ways to modify internal data constraints

“The phrase “the right hand knoweth not what the left hand doeth” describes this class of
bugs. The idea is simple and developers leave themselves wide open to this attack; in most
programs there are lots of ways to do almost anything. What this means to testers is that the
same function can be invoked from numerous entry points, each of which must ensure that
the initial conditions of the function are met.

“An excellent example of this is the crashing bug one of our students found in PowerPoint,
regarding the size of a tabular data structure. The act of creating the table is constrained to
25×25 as the maximum size. However, one can create such a table, then add rows and
columns to it from another location in the program—crashing the application. The right hand
knew better than to allow a 26×26 table but the left hand wasn’t aware of the rule.”

Equivalence class

Two tests are members of the same equivalence class if you expect the same results from each. Tests are
equivalent with respect to a theory of error. Two tests might be equivalent relative to one potential failure
and entirely different with respect to a different potential failure.

Cem Kaner Assessment in the Software Testing Course: Appendix C Page 29

Short Answers 10 points each

 Nested analysis Series analysis First variable

-3,0,20
Second variable
10,20

Used invalid values Total

<Points> 4 3 2 2 ignore 10

Consider a program with two loops, controlled by index variables. The first variable
increments (by 1 each iteration) from -3 to 20. The second variable increments (by 2 each
iteration) from 10 to 20. The program can exit from either loop normally at any value of the
loop index. (Ignore the possibility of invalid values of the loop index.)

 If these were the only control structures in the program, how many paths are there
through the program?

 If the loops are nested
 If the loops are in series, one after the other

 If you could control the values of the index variables, what test cases would you run
if you were using a domain testing approach?

 Please explain your answers with enough detail that I can understand how you
arrived at the numbers.

Analysis
• The first variable has 24 possible values (-3, -2, -1, 0, 1, ..., 20)
• Second variable has 6 possible values (10, 12, 14, 16, 18, 20)

a) Analysis if loops are nested.
Suppose loop 1 was 1, 2, 3, Suppose loop 2 was 4,5
Loop 1 with loop 2 inside it =

2 one through loop (1,4) (1,5)
4 twice through loop (1,4,2,4), (1,4,2,4,5), (1,4,5,2,4), (1,4,5,2,4,5)
8 three through loop (1,4,2,4,3,4), (1,4,2,4,3,45), (1,4,2,45,3,4), (1,4,2,45,2,45),
(1,45,2,4,3,4), (1,45,2,4,3,45), (1,45,2,45,3,4), (1,45,2,45,3,45)

Illustrates the general rule:
If N1 = number of values of the outer loop and N2 = number of values of the inner loop,
Number of paths = sum (i=1 to N1) N2^i
 Example 2 + 2*2 + 2*2*2 for our sample loop
The sum is therefore (sum)(i=1-to-24) 6^i

1 6
2 36
3 216
4 1296
5 7776

Cem Kaner Assessment in the Software Testing Course: Appendix C Page 30

6 46656
7 279936
8 1679616
9 10077696

10 60466176
11 362797056
12 2176782336
13 13060694016
14 78364164096
15 4.70185E+11
16 2.82111E+12
17 1.69267E+13
18 1.0156E+14
19 6.0936E+14
20 3.65616E+15
21 2.1937E+16
22 1.31622E+17
23 7.8973E+17
24 4.73838E+18

 5.68606E+18

b) Analysis if the loops are in series

• Total = 24 x 6 = 144 paths
• First variable -3, 0, 20 (Ignore the possibility of invalid values of the loop index)
• Second variable 10, 20

[Note to the reader: Students who handled the nested analysis well handled everything else well. In
contrast, some students who correctly counted the variables’ values, figured out the series, and
seemed to handle the material reasonably comfortably, blew the nested analysis.

• If the nested analysis is done well, it probably deserves more than 4 points out of 10 -- but
the student doesn’t need the points.

• If the nested analysis is not done well, the 4 point allowance serves as a cap on the damage
this part of the question can do to the grade for the full question.]

 Not tested

2
Measure
2

Benefit N
1 each

Risk N
1 each

Benefit M
1 each

Risk M
1 each

Distinguish between using code coverage to highlight what has not been tested from using
code coverage to measure what has been tested. Describe some benefits and some risks of each
type of use. (In total, across the two uses, describe three benefits and three risks.)

Grading notes:
Emphasis on what has not been tested: you are looking for such things as blind spots in the testing,
or reality check on the process or on the projected ship date. There is no necessary claim that this is
a valid progress measure. You are merely identifying a set of tasks that have not been done.

Cem Kaner Assessment in the Software Testing Course: Appendix C Page 31

Emphasis on measurement: Assumption is that coverage is a valid measure of testing process. You
are looking for status check or productivity of staff member or group or nearness to completion.
Benefits and risks of highlighting the negative:
Benefits:

 reveal problems with the testing process
 reveal weaknesses or blind spots of the testing strategy
 reveal the overall utility of a collection of testing artifacts (no point maintaining a large test

suite that achieves only 2% coverage)
 reveal impossibility of a ship date

Risks:
 blaming tone
 might persuade managers to rely on this, in a way that encourages them to use coverage as a

measurement of progress later.
Benefits and risks of measurement:
Benefits:

 for exam purposes, I will accept the notion that we can check nearness to completion of
testing with this measure

 can note progress against a plan
 can report results in a way managers are used to hearing
 one factor in a ship decision

Risks:
 encourages people to do things that are counted rather than things that are more likely to

reveal problems
 discourages people from tests (e.g. configuration tests) that are not counted
 gives mgmt the false perception of progress because it omits key tests that are not

counted.
 Encourages premature release of the product
 Discriminates against testers who do tests that are “redundant” under this measure

[References: Marick’s writings on coverage, such as Classic Testing Mistakes and How to Misuse
Code Coverage.]

7
Month
Field

Boundary
chart *

Realize
Inter-
depence

28
day
month

29
day
leap
year

30
day

31
day

Month
Range

Year
Range

Invalid
pairings

Invalid
max
min

Invalid
chars
(shotgun
penalty -
- they
should
not
appear)

Tests
of full
field
(all 3
values
in 1
test)

Overall
analysis

Total
/ 24

Grade
/ 10

Points 2 2 2 2 2 2 2 2 2 2 -2 4 2 24 10*

Cem Kaner Assessment in the Software Testing Course: Appendix C Page 32

* = discretionary boost of up to one point allowed for “Clue”, should be rarely given.

Imagine testing a date field. The field is of the form MM/DD/YYYY (two digit month, two
digit day, 4 digit year). Do an equivalence class analysis and identify the boundary tests that
you would run in order to test the field. (Don’t bother with non-numeric values for these
fields.)

Grading notes--

• "overall analysis"--refers to the discussion and presentation of the analysis.
• A boundary chart is not compulsory, but some organized presentation of the material is. These 2

points are for the presentation of the answer
• Interdependence: the valid days will differ depending on which month and whether we are in

leap year or not.
• Invalid pairings: there must be tests of invalid combinations, such as Feb 29 in a non-leap-year

or June 31. [If the student shows no thinking about invalid combinations, deduct additional
points from “overall analysis”]

• There’s a 10% grading penalty for wasting space on non-numeric values. These don’t belong in
the answer (read the question), so the student is writing a shotgun answer. I don’t always have
the opportunity to penalize for defocused shotguns, but this is such an obvious situation that I am
glad to take advantage of it. It lets me make a point about sticking to the call of the question
when I review mid-term test results.

Equivalence classes
• valid days. There are 4 equivalence classes for days.
• All are 0-x, where x=28, 29, 30, 31 depending on the months and leap year

1. month = 28 day
2. month = 29 day leap year
3. month = 30 day
4. month = 31 day

• valid months 1-12
• years 0-9999 or some other plausible range

List tests
(a) {28 day month} {0,1,28,29} {0,2000,9999,10000, leap year}
(b) {29 day month} {0,1,29,30} {0,2000,9999,10000, leap year}
(c) {30 day month} (0,1,30,31} {0,2000,9999,10000, leap year}
(d) {31 day month} {0,1,31,32} {0,2000,9999,10000, leap year}

In other words, for tests of type (a), pick a 28 day month (February) and test with one of the numbers in the
set {0, 1, 28, 29} and with one of the numbers in the set {0,2000,9999,10000, any leap year}.

Minefield question E1 E2 E3 E4 E5 Total

Cem Kaner Assessment in the Software Testing Course: Appendix C Page 33

2 2 2 2 2 10

8. In lecture, I used a minefield analogy to argue that variable tests are better than repeated
tests. Provide five counter-examples, contexts in which we are at least as well off reusing the
same old tests.

<(I’m crediting repeated tests across different configurations, even though the thing that varies here is the
configuration (it is a varying test in this sense)>

The following quotes are from a discussion on Software-Testing mailing list. They were not read in class, but
they provide arguments that were seen as appropriate by two senior members of the field. Students should
get credit for any of these.

Examples from James Bach:
“You might rationally repeat tests...

“1. if there is a substantially greater probability of a problem happening in
an area that is exercised by the tests, compared to other areas. The
distribution of problems across a product space is not necessarily uniform.

“2. if any problem that could be discovered by those tests is likely to have
substantially more importance than problems in other areas. The distribution
of the importance of product behavior is not necessarily uniform.

“3. if they have *some* value and are sufficiently inexpensive compared to
the cost of new and different tests. New tests may still be vitally
important for the test effort, however.

“4. if the tests you repeat represent the only tests that seem worth doing.
This is the virus scanner argument: maybe a repeated virus scan is okay,
instead of constantly changing virus tests. However, sometimes we introduce
variation because we aren't sure what tests truly are worth doing.

“5. if variation of tests is specifically prohibited by contract or
regulation. In other words, the point of your testing may not be to find
problems.

“6. if the repeated tests comprise a performance standard that gets its value
by comparison with previous executions of the same exact tests. When
historical test data is used as an oracle, then you must take care that the
tests you perform are comparable to the historical data. Holding tests
constant may not the only way to make results comparable, but it can be the
best choice available.

“7. when the discovery of bugs is probablistic, perhaps due to important
variables involved that you can't control in your tests. Performing a test
that is, to you, exactly the same as a test you've performed before, may
result in discovery of a bug that was always there but not revealed until
the uncontrolled variables line up in a certain way. This is the same reason
that a gambler at a slot machine has for playing again after losing the first time.”

Cem Kaner Assessment in the Software Testing Course: Appendix C Page 34

From Ross Collard, supplementing Bach:

1, Regression Testing is Insurance
James Bach's original posting (attached) discussed whether it is better to vary or repeat the
same test cases. It was not directly about regression testing, but regression testing is
related and I would like to address the implications of his posting for regression testing.
Many people think that regression testing is over-rated, and the minefield analogy could be
used to help make the case for this position. One implication of the minefield is: "Don't re-
test the same conditions."
I don't agree that regression testing is over-rated. Large organizations like Microsoft and
Cisco mindlessly re-run the same regression test cases night after night, often at the rate of
tens of thousands of test cases per night.
Almost all of these test cases almost always pass -- usually well over 99% pass with
reasonably stable and mature systems. The biggest category of regression test case
failures is generally the repeats -- the ones we already know about, because they failed
before for minor reasons and we are being leisurely in getting around to fixing them. So
these test case failures do not provide any new information.
Places like Cisco have made their automated regression testing fast enough and cheap
enough that even if the pass rate is 100%, they have not paid too much to gain a sense of
confidence. (A caution -- many observers would say that this is a dangerous and false
sense of confidence if the regression testing is not highly competent.)
In the movie "Groundhog Day", Bill Murray wakes up each morning, only to have to re-live
the same day over and over. Bill could have been a regression tester, because the heart of
regression testing is repetition; re-running the same test cases from version to version of a
system. As Yogi Berra said: "It's deja vu all over again."

2. Regression Testing is Distinct from Modification Testing
It helps to ensure we are using words in the same way here.
Localized change testing or modification testing addresses what has changed. This testing
is narrow in focus, based on the change requests, problem reports, programmers' impact
assessments, before / after comparisons (the diff or delta files) from source code control
tools, or other sources of information.

3. Regional Impact Testing
After the specific change has been checked, i.e, the system behavior conforms to the
expected new behavior described in the change request, or the problem as reported in the
problem report has been fixed, some people perform what they call regional impact testing.
(Note -- there is usually more than one change request or problem report included in a new
system build. Localized testing is done for each one of them.)
Regional impact testing goes beyond the localized change and seeks to test in the perceived
high-impact region around the change. This requires that the testers have a reasonable
chance of identifying the high-impact region, which usually requires a gray box view of the
system architecture -- what connects to what internally.
As an example of regional impact testing, consider two system features which externally
appear to be unrelated. If one feature is changed, there is no particular reason to re-test the
other. Internally, though, let's say these features are data-coupled, i.e., share some
common data. This means that the features interact through the shared data and could
interfere with each other. The first feature could run first, corrupt the shared data, and cause
problems for the other feature.

Cem Kaner Assessment in the Software Testing Course: Appendix C Page 35

Regression testing, at least in this view, is different and follows the localized modification
testing and regional impact testing. In other words, the modification itself has already been
checked prior to the regression testing.

4. The Mines Move
A significant observation, in my opinion, was stated by Kamesh Pemmaraju in his posting.
He made the point that the minefield analogy is inexact (like all analogies). The locations of
the hidden mines are not static. Every night after we have cleared (or more likely, partly
cleared) the minefield the enemy is back in there seeding the field with new mines. (With
apologies to software engineers -- we know (hope?) their primary objective is not to seed
mines.)
As Kamesh said: "In a dynamic environment, new mines are planted and old mines (that
were cleared earlier) re-appear and these active mines may now occur in the paths that
were traversed before."

5. Changes Often Introduce Bugs
We have ample evidence that changes can introduce bugs, and these bugs are scattered in
patterns that do not respect the parts of the system we have already tested. In other words,
it is not hard to inadvertently break something which previously was working.
According to Watts Humphrey (I think) of the SEI, the probability of a software engineer
inadvertently introducing a defect with a modification is 20% to 50%. To be fair, most of
these new defects are trivial, and about two-thirds of them are seen and fixed / removed
immediately by the software engineer before they are seen by the system testers.
Capers Jones of Software Productivity Research estimates that for every hundred Y2K fixes,
seven new defects were introduced. Y2K fixes, while numerous, were considered very
straightforward and low risk, perhaps 1 or 2 on a scale from 1 to 10 of the difficulty of
software fixes.
IBM has reported that 9% of all modifications to its MVS mainframe operating system
introduce new defects -- and that is just the ones they know about.
For an Alcatel subsidiary which makes high-speed backbone switches for the Internet, the
number of modifications which introduce new bugs is over 20%. (I don't have permission to
reveal the subsidiary's name.)
We also have the notorious example of DSC Communications, where an inadvertent one-
character bug in a three-line-of-code change to an existing two million LOC system came
close to putting the company out of business. They did not catch the side effect (the inserted
bug) because they did not adequately regression test. Or at least, that was a question
raised in a congressional inquiry into the damages the side effect caused.

6. Variations and Equivalence
I do not necessarily disagree with James Bach's heuristic: "It's better to vary tests than to
repeat the same tests." As he said, the reason for raising the issue is to help ensure we
think through the advantages and disadvantages of varying test cases in a particular
situation.
Several people in prior postings pointed out that the number of test cases run is typically
only a small sample of all possible conditions, it is better to vary the sample on re-runs.
However the whole idea of equivalence classes (sets of test cases grouped together based
on commonality vs. variances, where if the system works for one test case it likely works for
all in the set), reduces the importance of varying the test cases.
In theory, this "if it works for one, it works for them all" claim means that there is no point to
variations within an equivalence class.

Cem Kaner Assessment in the Software Testing Course: Appendix C Page 36

Of course, since the definitions of equivalence classes always have some assumptions and
uncertainties, and our equivalence class groupings are usually imperfect, there is still a
significant value to varying the test cases nevertheless.
So while deciding whether to vary the test cases is worthwhile, and how, I do not see these
as the most important issues.
The more important point in my opinion is to reasonably extensively re-test existing features
and characteristics that should not have been affected by a change -- in other words,
whether to regression test at all, regardless of how much the test cases are varied or held
constant.
Many, perhaps most, organizations make a change, then test the change itself and a little bit
around the change, and do little or no regression testing.

7. Partial Regression Testing
Many test groups do not run a full regression test on every build or version of a system,
because it is prohibitively expensive and time-consuming. Ideally, the regression testing
would be so fast and cheap that the testers can mindlessly re-run all the test cases, but this
is usually not the situation.
The idea in partial regression testing is either (a) to draw a boundary around a change to a
system, and to test only within that boundary, or (b) to take a subset of an entire regression
test case library, based on intelligent selection criteria for the situation, and re-run only this
subset
The assumption behind the first idea is that the system is decoupled -- any change
introduced within the boundary cannot adversely affect anything outside the boundary, i.e.,
in the untouched remainder of the system.
Some purists think that "partial regression" is a contradiction in terms: a regression test
means a complete re-test and thus cannot be partial. Despite this quibble, the concept of a
partial regression test can help to determine the appropriate limits for a regression test.

8. Re-Test Coverage Guidelines
To what extent should existing features, which should not have themselves been changed,
be re-tested after a modification?
Coverage guidelines embody a strategy for determining how much regression testing to do,
based on our best guess at the trade-offs of costs, benefits and risks in a particular testing
situation.
To implement these guidelines, each test case in the regression test case library has to be
categorized and tagged by its category (a test case can belong to multiple categories).
Examples of categories include (a) heavily used features and (b) unusually complex uses of
a feature.
For a low-to-moderate risk, low-to-moderate complexity system, fairly typical guidelines for
the recommended degree of re-testing after a change, (i.e., not including the testing of the
change itself), organized by category of regression test cases, are as follows:

Regression Test Category Degree of Coverage (*)
[(*) Percentage of all regression test cases in each category which are re-run.]

1.Smoke test 100%

Cem Kaner Assessment in the Software Testing Course: Appendix C Page 37

2. Test cases which have failed in the past
a. Critical errors 100%
b. Moderate or minor errors 10% to 20%

3. Test cases for basic functionality
a. Area(s) most impacted by changes 25% to 50%
 in this release
b. Positive remaining test cases 5% to 10%
c. Negative (robustness) remaining test cases 10% to 20%

4. Test cases for complex features 25% to 50%

5. Test cases for frequently or heavily used features 25% to 50%

6. Test cases for business-critical features 50% to 100%

7. Bad fix test cases 100%

The overall percentage coverage (percentage of all the test cases in the test case library
which are included in this particular regression test run) might be 25%-40%, as a weighted
average of the categories listed above.

9. Mutations
Douglas Hoffman discussed automated test case mutations in his STAR presentation.
Earlier, I mentioned extracting subsets of test cases from an existing (and probably large)
library of regression test cases. These test cases do not have to physically all exist -- there
could be a test data generator available to generate variations on demand. So for partial
regression testing the test cases effectively can be extracted from a virtual set.
(Mutation analysis, which seems to have fallen into disuse in its initial use, originally
generated mutations for a different purpose - to examine the efficacy of test cases.)

10. Repeatability vs. Rotation
If only a subset of the test cases in a particular category within the regression test case
library are going to be selected for re-testing, there is the option of selecting and using the
exact same test cases from cycle to cycle of regression testing, or rotating the subset of test
cases run in each cycle.
Let's assume that of all the existing positive test cases for basic functionality of a low-risk,
low-complexity system, the target coverage has been set to 10%. In other words, if there is
a total of 150 test cases in this category in the test case library, 15 of them will be included in
this regression test.
The question is: on subsequent re-testing of future versions of the system, should the same
subset of let's say 15 out of 150 test cases from a given category be re-used, or should the
membership of this subset be rotated (varied) from test cycle to test cycle?
This is simply a re-statement of James Bach's original question.

Cem Kaner Assessment in the Software Testing Course: Appendix C Page 38

There are two schools of thought on this. One opinion is that the randomly selected test
cases should not be rotated but remain constant, because this way there is before-and-after
comparability of the same test results from test cycle to test cycle.
With the first option, 15 test cases are selected and run in every regression cycle. The
remaining 135 test cases are never utilized., at least not in this series of regression test
cycles.
This first option, to re-run the exact same test cases from cycle to cycle, has the virtue of
repeatability. The selected test cases are run routinely in every cycle, so that we can
compare the results of these same test cases across all the cycles of regression testing.
The same test cases should always produce the same results over time, unless there is a
deliberate reason that we should expect a change in results. The discrepancy in results, if it
occurs, is what we are interested in. (Comparator tools are cheap and simple, but great for
this mindless re-checking.)
As a few people such as Rex Black mentioned, this repetition is sometimes contractually
required, especially in areas regulated by U. S. government agencies such as the DOD,
FDA, FAA and NRA.
In 5 cycles of regression testing, however, the total coverage does not exceed 10% because
the same test cases are always being run.
The other school of opinion is that the members of the subset of test cases taken from each
category should be rotated from test cycle to test cycle, in order to provide a broader test
coverage over time.
The second option, to rotate the subset of test cases within the same category from test
cycle to test cycle, has the virtue of providing broader coverage -- a wider range of the test
cases within the category are executed over a series of regression test cycles. However, we
lose 100% repeatability -- not all the selected test cases are run in every regression cycle.
With this second option, a different subset of 15 test cases out of the total of 150 are
selected and run in each regression cycle. Over a duration of 5 test cycles, a total of 75
different test cases are executed, for a total coverage of 50%, but none of them are
repeated.

11. The Cost of Generating Variations of Outcomes
Deliberate and random or periodic variations are fairly easy to build into regression test case
and can be triggered automatically, and generating variations of test cases can be
automated too.
Now I want to be a hypocrite and disagree with myself.
It is easy to generate variations of the input data values and initial conditions.
It is frequently much harder to generate the correct variations of the expected outcomes of
these test cases.
Imagine, for example, we have to test a system which computes taxes for the U.S. Internal
Revenue Service from input tax returns.
Producing the input variations is dead easy -- we can use a test data generator to bury us in
test cases within minutes.
But trying to determine whether we got the right results (the computed amounts of tax due) is
the killer. For this we would need an oracle, which in the general case would have to
incorporate all the U.S. tax code -- the oracle would be bigger than the system we are trying
to test.

12. Parallel or Volume Testing

Cem Kaner Assessment in the Software Testing Course: Appendix C Page 39

In some ways our great-grandparents who tested mainframe systems were way ahead of the
game. They used unplanned, uncontrolled variations as part of a popular mainframe testing
technique called parallel testing
In a parallel test, which is also called a volume test, a large volume of test cases are
"pumped through" the system or the feature being tested, in a before-and-after comparison
of the new system version with the prior version. The term back-to-back testing is also used,
to describe the situation where the same set of test cases is executed with two versions of
the same system. Apart from what is expected to have changed from version to version,
everything else should be the same in the new version as in the old one.
Unlike a planned, detailed test, usually the parallel test cases are deliberately not pre-
defined individually nor pre-filtered. The test cases are usually extracted in bulk wholesale
mode from a passing (large) stream of live data. This live data stream is continuously
changing. After the extracted test data is used in one before-and-after comparison of two
system versions, it is typically thrown away and a fresh (and different) extract is used the
next time.
A pre-defined set of test cases may reflect biases and contain gaps. The hope of parallel
testing is that, with a sufficiently large volume of these test transactions, all significant
conditions and combinations of conditions will be checked.
This idea is a little like throwing mud at a politician: with sufficient volume, some must stick.
In the words of Lenin: "Quantity has a quality of its own." (He was commenting on the use of
tanks in ground warfare.)
Unfortunately, parallel testing carries its own significant dangers, the biggest of which is the
hidden carry-forward of pre-existing bugs. The before and after versions of the system
contain the same hidden bug and so both behave the same way. New England Tel (now
part of Verizon) faced a huge liability and litigation for years of small over-billings which
added up to large sums, based on a hidden bug which passed years' worth of parallel
testing.
To be fair, the hidden carry-forward of pre-existing bugs is a danger which can occur with
any type of before-and-after results comparison, including regression testing where the
expected results have not been independently computed.

13. Varying the Number of Test Cases per Cycle
For most test projects, it is unrealistic to assume that exactly the same number of test cases
will be executed on each build.
As the trust in each subsequent build increases, the testers may be willing to decrease the
number of regression test cases for each build. More likely, not all features will be ready to
test in the earlier the test cycles, so that not all test cases could be run even if we wanted to.
All the test cases are not likely to be ready at the beginning, even if all the features are
available to test. A full regression test may deliberately not be run on each build, either
because of the frequent turnaround (the quick replacement of the build by the next new
version does not allow enough time), or because the regression testing is too expensive.
And some builds may be skipped, as the testers may choose to wait for a later build instead
of taking the build which is immediately available.
In addition, the testers usually gain more confidence from build to build, as (a) the testers'
understanding of what they have increases, and (b) the versions become progressively
cleaner.
So far, my discussion has assumed that the number of test cases to re-run is fixed from build
to build. This variation in the number of test cases run from cycle to cycle may influence the
mix between repeatability vs. rotation.
As the systenm under trest stabilizes / matures, some regression test groups increase the
proportion of test cases which are repeated (fixed), but I have not figured out as yet whether
this is a good idea or not.

Cem Kaner Assessment in the Software Testing Course: Appendix C Page 40

14. Determining the Best Re-Test Strategy

So do we repeat, rotate or use some mix of the two?
I have not done any kind of survey, but in my experience most regression test organizations
repeat anywhere from 75% to 100% of the same test cases, and rotate 0% to 25%.
I suspect the amount of rotation (variation) has generally been way too low.
We should repeat test cases only in areas where:
(a) The probabilities of new breakages appear to be high. For example, areas where
prior failures rates have been high are good candidates for intense re-testing.
(b) The costs of failure are so high we are not willing to take any chances.
(c) We want comparable results from test cycle to test cycle.
(d) The cost of variations (e.g., independently computing the new expected outcomes)
is too high to be effective.

Ross Collard

Three
different
missions

Mission
1

Strategy
2

Mission
1

Strategy
2

Mission
1

Strategy
2

Clue
1

List three different missions for a test group. How would your testing strategy differ across
the three missions?

Grading Notes:
A plausible relationship between the mission and the strategy / activity is sufficient for full credit, but the
strategy / activity description has to go beyond a statement of fulfilling the mission. For example, if the
mission is “Find defects”, the testing strategy has to say something more than “find defects” such as
concentrating on stress tests, concentrating on high risk areas of the product, etc.
Varying definitions of test groups (from course slides)

 Find defects
 Maximize bug count
 Block premature product releases
 Help managers make ship / no-ship decisions
 Assess quality
 Minimize technical support costs
 Conform to regulations
 Minimize safety-related lawsuit risk
 Assess conformance to specification
 Find safe scenarios for use of the product (find ways to get it to work, in spite of the bugs)
 Verify correctness of the product

Cem Kaner Assessment in the Software Testing Course: Appendix C Page 41

 Assure quality
“Clue” is discretionary, typical value is 0.5. If the mission strategies are weak but I give them a full credit,
I’ll not award the clue point (it was already awarded).

Goodness of tests D1

2.5
D2
2.5

D3
2.5

D4
2.5

total

List and describe four different dimensions (different “goodnesses”) of “goodness of tests”.

Grading Notes:
1 point for the item and 1.5 for the description
List from course:
 More powerful
 More credible
 Provides better support for troubleshooting
 Representative of a broader group of tests
 Is representative of events more likely to be encountered by the customer
 Is more likely to help the tester or developer develop an insight into the program

 Is easier to automate, easier to evaluate, more feasible, lower opportunity cost

Long Answers 20 points each

11.
Scenario

Explain how
develop

Describe Explain why good

total

 2 pts each good
idea
-2 if not for set
max 8

Max 5
(well described, good
scenario)

Tie facts of test to stated elements, 2
per element
Max 8

Imagine that you were testing the feature, Save With Password in the OpenOffice word
processor.
• Explain how you would develop a set of scenario tests that test this feature.
• Describe a scenario test that you would use to test this feature.
• Explain why this is a particularly good scenario test.

Cem Kaner Assessment in the Software Testing Course: Appendix C Page 42

Grading Notes
Scenario tests:

• Explain how you would develop a set of scenario tests for this feature. I expect a range of
possible ideas

o Research
 Customers
 Competitors
 In-house documentation for tasks

o Implementation
Note that we’re talking about a SET, not just one. If the explanation is appropriate only for a single
scenario test (not for a set), deduct points.

• Describe a scenario test you would use. I evaluate it against
o Realistic
o Complex
o Unambiguous
o Persuasive / credible to stakeholder

• Why is THIS a particularly good test
o Tie the facts to the elements

Name How many

Combs
2

What is all
Pairs table
4

Create
Table
10

Why
Correct
4

Total
20

We are going to do some configuration testing on the OpenOffice word processor. We want to
test it on

 Windows 95, 98, and 2000 (the latest service pack level of each)
 Printing to an HP inkjet, a LexMark inkjet, and a Xerox laser printer
 Connected to the web with a dial-up modem (28k), a DSL modem, and a cable

modem
 With a 640x480 display and a 1024x768 display

 How many combinations are there of these variables?
 Explain what an all-pairs combinations table is
 Create an all-pairs combinations table
 Explain why you think this table is correct.

Grading notes--

Cem Kaner Assessment in the Software Testing Course: Appendix C Page 43

• Combinations 3x3x3x2=54
• "explain" and "why correct?" are essentially the same question. The second one is an opportunity

for the student to look back and check the work as she starts writing her criterion.
• Students who blow the combination chart (by missing all pairs) are capped at 50%. This looks

harsh, but this is a very easy table and the students have had it for plenty of time. They shouldn’t
get this wrong.

Test
Plan

Strategy Q1 Guide
1

Q2 guide
2

Q3 Guide
3

Q4 Guide
4

Q5 Guide
5

Q6 Guide
6

Total
/ 20

Imagine that you are an external test lab, and Sun comes to you with OpenOffice. They want
you to test the product. How will you decide what test documentation to give them? (Suppose
that when you ask them what test documentation they want, they say that they want
something appropriate but they are relying on your expertise.) To decide what to give them,
what questions would you ask (4 to 6 questions) and how would the answers to those questions
guide you?

Grading notes-
[Note: I have refined the wording of this question since grading the exam in which this question appeared.
This analysis will be different next time because you won’t be asked for an overall strategy. “How will you
decide what test documentation to give them?” is deleted.]
With “typical” points and 4 questions, the student gets 16 plus up to 3 for strategy.
With “typical” points and 6 questions offered, the student can get 24 plus up to 3 for strategy,
Maximum points possible are 39 (1 per question, 5 per guide across 6 questions, plus up to 3 for strategy)
I reserve discretion over “A” and may slightly raise or lower an answer if it is in the 18-20 total range.

Strategy: How will you decide what test documentation to give them? An answer that says, I'll ask them
questions, is worth 0 points because I've said to ask questions. On the other hand, if they add extra research
ideas beyond asking questions, they can have 1 (typical) to 3 (professional-level) points.
Questions:
 The question alone gets one point for itself. They got a list of questions in the course, there is nothing

original here, just very simple memory work.
 The question alone gets no guidance points, zero. Guidance should take the form of a specific

statement of impact (of the answer) on the content or structure of the test documentation. An
exceptionally insightful and useful guidance answer can earn 5 points. An adequate (the typical)
answer earns 3 points. A weak answer earns 0-2. For examples of impact discussions, see the test
documentation chapter in Lessons Learned in Software Testing. This was required reading in the
course.

 Some people misread the question as calling for an aggregate judgment on the value of the answers. I
added back up to 6 points for the aggregate evaluation.

See course slides on requirements questions:
• Is test documentation a product or tool?

Cem Kaner Assessment in the Software Testing Course: Appendix C Page 44

• Is software quality driven by legal issues or by market forces?
• How quickly is the design changing?
• How quickly does the specification change to reflect design change?
• Is testing approach oriented toward proving conformance to specs or nonconformance with

customer expectations?
• Does your testing style rely more on already-defined tests or on exploration?
• Should test docs focus on what to test (objectives) or on how to test for it (procedures)?
• Should control of the project by the test docs come early, late, or never?
• Who are the primary readers of these test documents and how important are they?
• How much traceability do you need? What docs are you tracing back to and who controls them?
• To what extent should test docs support tracking and reporting of project status and testing

progress?
• How well should docs support delegation of work to new testers?
• What are your assumptions about the skills and knowledge of new testers?
• Is test doc set a process model, a product model, or a defect finder?
• A test suite should provide prevention, detection, and prediction. Which is the most important for this

project?
• How maintainable are the test docs (and their test cases)? And, how well do they ensure that test

changes will follow code changes?
• Will the test docs help us identify (and revise/restructure in face of) a permanent shift in the risk

profile of the program? Should docs (be) automatically created as a byproduct of the test automation
code?

Additionally, we might see the Phoenix questions (these are listed in Thinkertoys) or other context-free
questions (see Gause & Weinberg, Exploring Requirements).

Oracle Hyphenation

8
Footnotes
8

Compare
6

Total
20

You are using a high-volume random testing strategy for the OpenOffice word processing
program. You will evaluate results by using an oracle.

 Consider testing the hyphenation feature using oracles. How would you create an
oracle (or group of oracles)? What would the oracle(s) do?

 Now consider the placement of footnotes at the bottom of the page. How would you
create an oracle (or group of oracles) for this? What would the oracle(s) do?

 Which oracle would be more challenging to create or use, and why?
Note: If you don’t understand hyphenation, substitute “spell checking” for “hyphenation
in this question.

Grading notes.

Cem Kaner Assessment in the Software Testing Course: Appendix C Page 45

 In 2002, I applied gentle grading because we didn’t spend enough time on this in class for a
detailed answer. Additionally, just before the exam, it became clear that several foreign students
were befuddled about hyphenation. So, I sent out a note allowing spell checking instead, and
included this as one of the easy questions on the exam.
Hyphenation:
 How would you create an oracle?

o Use of prior version is worth 4 points (of 8). The problem is that there’s no reason to
believe the prior version works. Add points for discussion of this issue.

o Compare to competitor is worth 4-8 points depending on whether the answer deals
with the question of how we know the competitor works

o We could run both word perfect and word in parallel and raise the flag if they
disagree with our result

o We could build random sentences from a small vocabulary of words that have known
hyphenation characteristics, then check whether they were hyphenated properly
against a list

o We might run only a partial oracle that looks at hyphenation under some simple
rules.

 What would it do?
Spell checking
 How
 What would it do

Footnotes
 There are several things to check here--placement on the page, agreement between the

reference mark (e.g. footnote number) in the body and the one in the footnote, formatting of
the footnote, formatting of the reference mark, break of the long footnotes across pages,
formatting of tables in footnotes, etc.

 How
o Use of prior version is worth 3 points (of 7). The problem is that there’s no reason to

believe the prior version works. Add points for discussion of this issue.
o Compare to competitor is worth 3-7 points (of 7) depending on whether the answer

deals with the question of how we know the competitor works
o We could run both word perfect and word in parallel and raise the flag if they

disagree with our result
o We might run a partial oracle that looks only at some of the footnoting issues.
o If you write your own, how do you know it works and how do you decide what to

include. Are you designing it in a way that makes it likely to be suitable for high-
volume work?

 What would it do
Which oracle is more challenging and why

Cem Kaner Assessment in the Software Testing Course: Appendix C Page 46

 Footnoting is much more challenging because there are so many variables in play. Consider
the problem of placement at the bottom of the page, carrying long notes across pages,
formatting of tables and pictures inside footnotes, etc.

 However, a reasoned argument in favor of the other (hyphenation or spellcheck) will be
accepted to the extent that it is credibly argued.

follow-up testing Steps

3
Options
3

Configs
3

Generality
(3)

Other
(3)

Example1
4

example2
4

Example3
4

Total
20

Suppose that you find a reproducible failure that doesn’t look very serious.
 Describe three tactics for testing whether the defect is more serious than it first

appeared.
 As a particular example, suppose that the display got a little corrupted (stray dots

on the screen, an unexpected font change, that kind of stuff) in OpenOffice’s word
processor when you drag the mouse across the screen. Describe three follow-up
tests that you would run, one for each of the tactics that you listed above.

Grading Notes
Describe three tactics for testing: If you list an item without describing it, only 1 point.
Each description is worth 3 points, each example is 4 points. That totals 21, but from 19 to 20 is my
discretion
My examples of follow-up tests

 Tests related to my steps
 Enter more data into the table
 Enter data into the table lots of times (repeat same entries)

 Tests related to the structure of the situation
 Vary the size of the table
 Vary the contents of the table
 Vary the color, alignment, font, line width, etc of the table entries

 Tests related to the failure
 ?? what else causes mouse droppings ??
 print preview the screen

 Tests related to the persistent variables / options
 Location of the program within the window
 Whether the program is maximized
 Default cell format, such as alignment within the cells, font, line width, etc.

 Tests related to the hardware
 Different video resolution
 Different monitors

Cem Kaner Assessment in the Software Testing Course: Appendix C Page 47

 Different video cards
 Different OS (check one of the ports, is this unique? If not, then anything specific to

windows might be irrelevant)
 Different mouse / mouse driver
 Different memory

Cem Kaner Assessment in the Software Testing Course: Appendix D Page 48

Appendix D: Sample Assignments

Assignment 1: Create a first test case chart
In lecture, we brainstormed answers to the following:

The program reads three integer values from a card. The three values are interpreted
as representing the lengths of the sides of a triangle. The program prints a message that
states whether the triangle is scalene, isosceles, or equilateral.

» From Glen Myers, The Art of Software Testing
 Write a set of test cases that would adequately test this program.
 Please write your name on your answer so that I can return it to you. Hand it in

when you are done.
Let’s take one more crack at Myers’ exercise. I’d like a table like this from you that lists 5 good test cases:

Test Test Case Risk Why this test is powerful Expected Result

1

2

3

4

5

Where the columns are defined as:

 Test—fill in the test case number
 Test case—be specific about the inputs that you’ll feed the program. For example, 1,1,2
 Risk—be specific about the error you are trying to detect. For example (from 1,1,2), the risk is that

the program might accept a “triangle” that has side 1 + side 2 = side 3.
 Why this test is powerful—A test is powerful, compared to other tests, if it is more likely to expose a

failure than they are. If you test for a specific type of failure (the risk), use a powerful test – one that
is at least as likely to expose that failure as any other. To fill in this part of the answer, explain why
you think the test you chose is powerful. It might be helpful to provide examples of similar tests that
are less powerful than this one. If you think that this test is equivalent to many others (no more, no
less powerful), say “Equivalent” and list 2 or 3 other tests that you think are equivalent to this one.
This is an easy answer—but if I can easily spot a better test against the same risk, you won’t get
credit for saying “equivalent”.

 Expected result—What should the program do? You might respond, “Error Message.”

Cem Kaner Assessment in the Software Testing Course: Appendix D Page 49

Assignment Instructions
 Feel free to work in groups
 If you work with others, make sure to name them.
 If you work in a group, it is OK for the group to hand in one collective answer that you all co-sign.

(Just provide your name, I don’t need your student number.) However, if you co-sign it, you must be
able to able to explain EVERY test case that you have on the page.

 I expect better work from a group than from individuals and I will mark accordingly.
 If you work in a group, I expect 5 tests from each of you. So, if there are two of you in the group, the

assignment should contain 10 tests.
 Please don’t submit 100 tests. Pick 5 good ones per person. Prioritizing among possible tests is one

of the important skills of good testers.

Cem Kaner Assessment in the Software Testing Course: Appendix D Page 50

Grading Rubric for the Triangle problem
This rubric is given to the students. For each test, the first column indicates the points to be awarded if you
give an answer that has the characteristics listed in the second column. Each test can be awarded up to 10
points.
Test Case:

Risk:
0 Implausible or generic to the point of no value. Not a risk.

1 Generic Risk statement, Vague not related to power.

2 Less clear or less plausible but related to power.

3 Clear statement of plausible risk not related to power or
Less clear or less plausible risk but related to power.

4 Clear statement of plausible risk related to power.

Power:
0 No clear linkage between the power discussion and the risk.

1 Shows that the test can detect the error identified in the risk.

2 The test can detect an error, indicate how or why and provide some comparison to other
tests. Some indication that this is a good test.

3 Good comparison examples but weak explanation otherwise. A sufficiently strong
explanation but without examples. Must indicate this is better than the others.

4 State the principles under which this is more powerful and gives a persuasive example.

Expected Result:
0 Expected result not provided or incorrect.

1 Expected result provided and correct.

0 Values for the sides of a triangle not provided or incorrect.

1 Values for the sides of the triangle provided and correct.

Cem Kaner Assessment in the Software Testing Course: Appendix D Page 51

Assignment 2: Replicate and Edit Bugs
The purpose of this assignment is to give you experience editing bugs written by other people. This task will
give you practice thinking about what a professional report should be, before you start entering your own
reports into this public system.
• Work with OpenOffice Writer, the word processor.
• Read the instructions at http//qa.OpenOffice.org/helping.html, and make sure to use the oooqa keyword

appropriately. Read the bug entry guidelines at
http://www.OpenOffice.org/bugs/bug_writing_guidelines.html.

• Find 5 bug reports in IssueZilla about problems with OpenOffice Writer that appear to have not yet been
independently verified. These are listed in the database as “unconfirmed” or “new”. As of 9/1/2002, there
are 927 such reports associated with the “word processor” component. To find lots of bugs, use the
search at http://www.OpenOffice.org/issues/query.cgi rather than at
http://qa.OpenOffice.org/issuelinks.html.

• For each report, review and replicate the bug, and add comments as appropriate to the report on
issuezilla.

• Send me an email with the bug numbers and for each bug, with comments on what was done well, what
was done poorly and what was missing that should have been there in the bug report.

Assignment Procedure
For each bug:
• Review the report for clarity and tone (see “first impressions”, next slide).

• Send comments on clarity and tone in the notes you send me (but don’t make these comments on
the bug report itself)

• Attempt to replicate the bug.
• Send comments to me on the replication steps (were the ones in the report clear and accurate),

your overall impressions of the bug report as a procedure description, and describe any follow-
up tests that you would recommend.

• You may edit the bug report yourself, primarily in the following ways.
• Add a comment indicating that you successfully replicated the bug on XXX configuration in

YYY build.
• Add a comment describing a simpler set of replication steps (if you have a simpler set). Make

sure these are clear and accurate.
• Add a comment describing why this bug would be important to customers (this is only needed if

the bug looks minor or like it won’t be fixed. It is only useful if you clearly know what you are
talking about, your tone is respectful).

• Your comments should NEVER appear critical or disrespectful of the original report or of the
person who wrote it. You are adding information, not criticizing what was there.

• If you edit the report in the database, never change what the reporter has actually written. You are
not changing his work, you are adding comments to it at the end of the report

• Your comments should have your name and the comment date, usually at the start of the comment, for
example: “(Cem Kaner, 12/14/01) Here is an alternative set of replication steps:”)

• Send me an email, telling me that you have reviewed the report and made changes.
A Checklist for Editing Bugs
The bug editor should check the bug report for the following characteristics:
A. First impressions—when you first read the report:

Cem Kaner Assessment in the Software Testing Course: Appendix D Page 52

1. Is the summary short (about 50-70 characters) and descriptive? (see the slide: Important Parts of
the Report: Problem Summaries)

2. Can you understand the report? As you read the description, do you understand what the reporter
did? Can you envision what the program did in response? Do you understand what the failure
was?

3. Is it obvious where to start (what state to bring the program to, to replicate the bug)?
4. Is it obvious what files to use (if any)? Is it obvious what you would type?
5. Is the replication sequence provided as a numbered set of steps, which tell you exactly what to

do and, when useful, what you will see?
6. Does the report include unnecessary information, personal opinions or anecdotes that seem out

of place?
7. Is the tone of the report insulting? Are any words in the report potentially insulting?
8. Does the report seem too long? Too short? Does it seem to have a lot of unnecessary steps? (This

is your first impression—you might be mistaken. After all, you haven’t replicated it yet. But
does it LOOK like there’s a lot of excess in the report?)

9. Does the report seem overly general (“Insert a file and you will see” – what file? What kind of
file? Is there an example, like “Insert a file like blah.foo or blah2.fee”?)

B. When you replicate the report:
10. Can you replicate the bug?
11. Did you need additional information or steps?
12. Did you get lost or wonder whether you had done a step correctly? Would additional feedback

(like, “the program will respond like this...”) have helped?
13. Did you have to guess about what to do next?
14. Did you have to change your configuration or environment in any way that wasn’t specified in

the report?
15. Did some steps appear unnecessary? Were they unnecessary?
16. Did the description accurately describe the failure?
17. Did the summary accurate describe the failure?
18. Does the description include non-factual information (such as the tester’s guesses about the

underlying fault) and if so, does this information seem credible and useful or not?
C. Closing impressions:

19. Does the description include non-factual information (such as the tester’s guesses about the
underlying fault) and if so, does this information seem credible and useful or not? (The report
need not include information like this. But it should not include non-credible or non-useful
speculation.)

20. Does the description include statements about why this bug would be important to the customer
or to someone else? (The report need not include such information, but if it does, it should be
credible, accurate, and useful.)

D. Follow-up tests:
21. Are there follow-up tests that you would run on this report if you had the time? (There are notes

on follow-up testing in the course slides 105-117)?
22. What would you hope to learn from these tests?
23. How important would these tests be?

Cem Kaner Assessment in the Software Testing Course: Appendix D Page 53

24. You will probably NOT have time to run many follow-up tests yourself. Don’t take the time to
run more than 1 or 3 such tests.

25. Are some tests so obvious that you feel the reporter should run them before resubmitting the
bug? Can you briefly describe them to the reporter?

26. Some obvious style issues that call for follow-up tests—if the report describes a corner case
without apparently having checked non-extreme values. Or the report relies on other specific
values, with no indication about whether the program just fails on those or on anything in the
same class (what is the class?) Or the report is so general that you doubt that it is accurate
(“Insert any file at this point” – really? Any file? Any type of file? Any size? Maybe this is
accurate, but are there examples or other reasons for you to believe this generalization is
credible?)

GRADING NOTES FOR THE BUG EDITING ASSIGNMENT
Two components for grading the papers –

1) Comments at Issuezilla (the OpenOffice database)
2) Editor’s report submitted to us.

I allocated 14 points possible for each bug, but totalled out of 10. That is, if you got a 3/14 for the bug, your
score was changed to 3/10. Similarly, 14/14 became 10/10. There were 10 points available for each bug.

COMMENTS ON THE BUG REPORTS THEMSELVES, FILED IN ISSUEZILLA
[NOTE: This was prepared as feedback for students but can be easily turned into a rubric.]

The content of your comments has to vary depending on the problem. The key thing is that the follow-up
report has to be useful to the reader.

For example, a simple failure to replicate might be sufficient (though it is rarely useful unless it includes a
discussion of what was attempted.) Sometimes, detailed follow-up steps that simplify or extend the report are
valuable.

This is worth up to 7 points out of 10

 Subcomponents of the comments at Issuezilla Points possible

1 Report states configuration and build + Up to 1

2 If the report is disrespectful in tone, zero the grade for the report. 0 for the report

3 If you clearly report a simpler set of replication steps + Up to 5

4 If you clearly report a good follow-up test + Up to 5

5 A follow-up test or discussion that indicates that you don't understand
the bug is not worth much.

+ Up to 1

6 If there is enough effort and enough usable information in the follow
up test.

+ Up to 3

7 If you make a good argument regarding importance (pro or con) + Up to 5

Cem Kaner Assessment in the Software Testing Course: Appendix D Page 54

8 If the bug is in fact not reproducible, and the report demonstrates that
you credibly tested for reproducibility

+ Up to 5

9 Nonreproducible bug on alternate configuration without discussion - 1

10 Nonreproducible bug on alternate configuration that was already
dismissed

- 2

REPORT TO US
This is worth up to 7 points out of 10
Here, you evaluated the report rather than trying to improve it. I wanted to see details that suggested that you
had insight into what makes bug reports good or bad, effective or ineffective. I did not expect you to walk
through every item in the checklist and tell me something for each item (too much work, most of it would
have wasted your time). Instead, I expected that you would raise a few issues of interest and handle them
reasonably well. For different reports, you might raise very different issues.

 1) I was interested in comments on:

a) What was done well.
b) What was done poorly.
c) What was missing that should have been there.

 2) In the assignment, the checklist suggested a wide range of possible comments, on

d) First impressions
e) Replication
f) Closing impressions
g) Follow-up tests

The comments did not have to be ordered in any particular way but they should have addressed the issues
raised in the assignment checklist in a sensible order. We credited them as follows:

Individual issue discussions are worth up to 3 points, but are normally worth 0.5 or 1 point (typically 1
point if well done). An exceptional discussion that goes to the heart of the quality of the report or
suggests what should have been done in a clear and accurate way is worth 2 points. An exceptional and
extended (long) discussion that goes to the heart of the quality of the report AND includes follow-up test
discussion or suggests (well) what should should have been done is worth 3 points.

3) The primary basis of the evaluation in this section is insight into the quality of the bug report. If the
student has mechanically gone through the list of questions, without showing any insight, the max
point count is 5. If we see insight, the max point count is 7.
A discussion that shows that the tester did not understand the bug under consideration is worth at
most 5, and was often worth less.

Bug number Comments at issuzilla Editor’s report Total points
1 7 7 14 ≡ 10
2 7 7 14 ≡ 10
3 7 7 14 ≡ 10
4 7 7 14 ≡ 10
5 7 7 14 ≡ 10
GRAND TOTAL 50

Cem Kaner Assessment in the Software Testing Course: Appendix D Page 55

Assignment 3: Domain Testing & Bug Reporting
1 Create between 10 and 20 domain tests. You can stop at 10 if you find (and write up) 2 bugs. You

can stop at 15 tests if you find (and write up) 1 bug.
2 Work in the Word Processing part of OpenOffice.
3 Pick a function associated with Word Processing. Please run all of your tests on the same function.

(If several students are working together, you can pick one function per student.)
4 Pick one (1) input, output, or intermediate result variable

 Identify the variable. Stick with that one variable throughout testing.
 Run a mainstream test (a test that is designed to exercise the function without stressing it).

You do tests like this first in order to learn more about the function and the variable’s role in
that function.

5 Identify risks associated with that variable
6 For each risk, design a test specifically for that risk that is designed to maximize the chance of

finding a defect associated with this risk.
7 Explain what makes this a powerful test. It might help you to compare it to a less powerful

alternative.
8 What is the expected result for the high-power test?
9 What result did you get?
10 Report your results in a table format that has the following columns:

1 Feature or function
2 Variable name or description
3 Risk
4 Test
5 What makes this test powerful
6 Expected result
7 Obtained result

11 If you find bugs, write up bug reports and enter them into Issuezilla.
12 I strongly recommend that you pair up with someone and have them replicate your bug and evaluate

a draft version of your report before you submit it to Issuezilla. I will evaluate your report against a
professional standard of quality (essentially, the same evaluation that you just did in Assignment 2).

13 Write a summary report that explains what you believe you now know and don’t know about the
function, based on your testing. (If your group tested several functions, write up a summary report
for each.)

Notes (that I’ll use for grading) on Exercise 3
 It’s important to answer every section:

 The table needs 7 columns
 There should be 10-20 tests and 0-2 bug reports
 There should be a summary report that explains what you know about the function under

test.
 It’s important to show the domain analysis (or its results)

 Use boundary values

Cem Kaner Assessment in the Software Testing Course: Appendix D Page 56

 Identify them as bounds and equivalence classes or identify the different sections of the
space as you partition it. You might find it useful to start with a boundary analysis (and
table).

 Be specific about risk
 Be specific about power (compare to others of the same equivalence class)

Assignment 4 Exploratory Attacks
 This is the fourth of five assignments.
 This is a good assignment for discovering bugs. Remember that if you want bonus points, the bugs

MUST be in the database (and I must be notified of it) by December 6 (CSE 4431) or December 8
(SWE 5410). Please feel free to take a bug to a replicator as soon as you have written it up. Enter the
bug into IssueZilla when you feel it is good enough to enter (whether you have taken it to a replicator
or not). Then send me a note with the bug report or with a pointer to it.

 Conduct at least 4 tests of the OpenOffice Word Processing feature, involving one attack from each
class of attack:

 Input constraints
 Output constraints
 Storage constraints
 Computation

 Do NOT do these tests on an embedded spreadsheet in OpenOffice.
 For each test,

 explain why your test is a particularly powerful example of that kind of attack. (That is,
explain why this test is better than other, similar tests that you could derive from the same
type of attack.)

 Explain why your attack is a member of the class (input / output / storage / computation) that
claim for it.

 If you find a bug, please report it in the bug tracking database.
 I encourage you to do this assignment with a (one) partner. Creative testing works better in pairs.
 The usual collaboration rules apply--if two of you work together, you should hand in eight tests, two

from each category.

Assignment 5 Test Automation Requirements
 Do this question in collaboration with one other student.
 Imagine that you are on the OpenOffice testing team as a full-time staff member. You are asked to

use a GUI automation tool, such as WinRunner, Silk, or QA Robot, to automate some or all of the
testing of OpenOffice Word.

 Read “Avoiding Shelfware”, “Architectures of Test Automation” and the other papers on test
automation on the Blackboard site.

 Consider any ten of the “Twenty-Seven Questions About Requirements” discussed in Avoiding
Shelfware. To the best of your ability (sometimes you will make and state reasonable assumptions
rather than doing extensive research), answer those ten questions and for each one, explain how that
answer would influence your decisions as to what to automate, how to automate, and when in the
project to automate it. (Note: you should consider 10 questions whether you work alone or with one
other student.)

Cem Kaner Assessment in the Software Testing Course: Appendix D Page 57

1 This work was supported by National Science Foundation grant EIA-0113539 ITR/SY+PE "Improving the Education
of Software Testers.".
2 Cem Kaner is a Professor of Software Engineering at the Florida Institute of Technology in Melbourne Florida. The
author acknowledges the assistance of Ajay Jha, Becky Fiedler and Pat McGee in preparing parts of this material and
the longer term contributions of James Bach.
3 “Encouraging students to study together” includes setting up two to three study sessions before each test--I supply
coffee and chocolates or pay for breakfast at the local café while the students study together. I’m available to facilitate
the discussion when students get stuck or have apparently irreconcilably conflicting views, but I don’t provide the
answers. Along with getting the students to work together--something that many computer science students are not used
to doing, this has a positive effect on morale.
4 There are plenty of online resources for law students who are learning how to write essay exams, such as

 Martha Peters, “A General Plan for Exams,” University of Iowa College of Law Academic
Achievement Program, http://www.uiowa.edu/~aap001/examwrite.html, viewed 2/3/03.

 Carolyn Nygren, “Legal Learning for Bar Candidates -- Bar Exam”,
http://www.findlaw.com/studyskills/3_bar_candidates.html, viewed 2/3/03.

 Gregory Berry, “Rules of Effective Examsmanship for Law Students,” School of Law, Howard
University, http://www.law.howard.edu/faculty/pages/berry/advice/examtips.htm, viewed 2/3/03.

In addition, many books coach law students on exam preparation and writing skills.
5 Two examples of University website guides to essay questions are:

 Writing@CSU Writing Guide: “Answering Exam Questions,”
http://writing.colostate.edu/references/processes/exams, viewed 2/3/03.

 University of Durham Undergraduate Information Site, “Advice on Answering Exam Questions,”
http://www.dur.ac.uk/biological.sciences/Undergraduate/ugexampage2.htm

These are tip-of-the-iceberg examples. Searches on www.dogpile.com or www.google.com on phrases like “essay exam
strategy” and “call of the question” yield thousands of links.
6 See Cem Kaner, James Bach & Bret Pettichord, Lessons Learned in Software Testing, Wiley, 2002, chapter 6.

