
Copyright (c) Cem Kaner, 1998. All rights reserved. kaner@kaner.com 408-244-7000 Slide #1

STAR 98STAR 98

Avoiding Shelfware:

A Manager’s View of
Automated GUI Testing

Cem Kaner J.D., Ph.D., ASQ-CQE

Copyright (c) Cem Kaner, 1998. All rights reserved. kaner@kaner.com 408-244-7000 Slide #2

OverviewOverview

• The GUI regression test paradigm

• 19 common mistakes

• 27 requirements questions

• Planning for short-term ROI

• Successful architectures

• Conclusions from LAWST

Copyright (c) Cem Kaner, 1998. All rights reserved. kaner@kaner.com 408-244-7000 Slide #3

GUI Regression Test ParadigmGUI Regression Test Paradigm

• Create a test case.

• Run it and inspect the output

• If program fails, report bug and try later.

• If program passes, save the resulting
outputs.

• In future tests run the program and
compare the output to the saved results.
Report an exception when the current
output and the saved output don’t match.

Copyright (c) Cem Kaner, 1998. All rights reserved. kaner@kaner.com 408-244-7000 Slide #4

Common Mistakes and ProblemsCommon Mistakes and Problems

• Underestimated cost

• Delayed testing, adding even more cost
(albeit hidden cost.)

Copyright (c) Cem Kaner, 1998. All rights reserved. kaner@kaner.com 408-244-7000 Slide #5

Common Mistakes and ProblemsCommon Mistakes and Problems

• Low power of regression testing

Copyright (c) Cem Kaner, 1998. All rights reserved. kaner@kaner.com 408-244-7000 Slide #6

Common Mistakes and ProblemsCommon Mistakes and Problems

• Failure to recognize that we are writing
applications.

• Adoption of appalling design and
programming practices.

» Embedded constants

» No modularity

» No source control

» No documentation

» No requirements analysis

» No wonder we fail.

Copyright (c) Cem Kaner, 1998. All rights reserved. kaner@kaner.com 408-244-7000 Slide #7

Common Mistakes and ProblemsCommon Mistakes and Problems

• Maintainability is a core issue because
our main payback is usually in the next
release, not this one.

Copyright (c) Cem Kaner, 1998. All rights reserved. kaner@kaner.com 408-244-7000 Slide #8

19 Common Mistakes19 Common Mistakes

• Don’t underestimate the cost of
automation.

• Don’t underestimate the need for staff
training.

• Don’t expect to be more productive over
the short term.

• Don’t spend so much time and effort on
regression testing.

• Don’t use instability of the code as an
excuse.

• Don’t put off finding bugs in order to write
test cases.

• Don’t write simplistic test cases.

• Don’t shoot for “100% automation.”

• Don’t use capture/replay to create tests.

• Don’t write isolated scripts in your spare
time.

• Don’t create test scripts that won’t be
easy to maintain over the long term.

• Don’t make the code machine-specific.

• Don’t fail to treat this as a genuine
programming project.

• Don’t “forget” to document your work.

• Don’t deal unthinkingly with ancestral
code.

• Don’t give the high-skill work to
outsiders.

• Don’t insist that all of your testers be
programmers.

• Don’t put up with bugs and crappy
support for the test tool.

• Don’t forget to clear up the fantasies
that have been spoonfed to your
management.

Copyright (c) Cem Kaner, 1998. All rights reserved. kaner@kaner.com 408-244-7000 Slide #9

Requirements AnalysisRequirements Analysis

• Requirement: “Anything that drives
design choices.”

• 27 questions on later slides

• HERE’S ONE KEY EXAMPLE:

»Will the user interface of the
application be stable or not?

Copyright (c) Cem Kaner, 1998. All rights reserved. kaner@kaner.com 408-244-7000 Slide #10

Short Term Short Term ROIROI

• Smoke testing

• Configuration testing

• Stress testing

• Performance benchmarking

• Other tests that extend your reach

Copyright (c) Cem Kaner, 1998. All rights reserved. kaner@kaner.com 408-244-7000 Slide #11

27 Requirements Questions27 Requirements Questions

• Will the user interface of the application
be stable or not?

• To what extent are oracles available?

• To what extent are you looking for
delayed-fuse bugs (memory leaks, wild
pointers, etc.)?

• Does your management expect to
recover its investment in automation
within a certain period of time? How long
is that period and how easily can you
influence these expectations?

• Are you testing your own company’s
code or the code of a client? Does the
client want (is the client willing to pay
for) reusable test cases or will it be
satisfied with bug reports and status
reports?

• Do you expect this product to sell
through multiple versions?

• Do you anticipate that the product will be
stable when released, or do you expect to
have to test Release N.01, N.02, N.03 and
other bug fix releases on an urgent basis
after shipment?

• Do you anticipate that the product will be
translated to other languages? Will it be
recompiled or relinked after translation (do
you need to do a full test of the program after
translation)? How many translations and
localizations?

• Does your company make several products
that can be tested in similar ways? Is there
an opportunity for amortizing the cost of tool
development across several projects?

• How varied are the configurations
(combinations of operating system version,
hardware, and drivers) in your market? (To
what extent do you need to test compability
with them?)

Copyright (c) Cem Kaner, 1998. All rights reserved. kaner@kaner.com 408-244-7000 Slide #12

27 Requirements Questions27 Requirements Questions

• What level of source control has been
applied to the code under test? To what
extent can old, defective code
accidentally come back into a
build?.How frequently do you receive
new builds of the software?

• Are new builds well tested (integration
tests) by the developers before they get
to the tester?

• To what extent have the programming
staff used custom controls?

• How likely is it that the next version of
your testing tool will have changes in its
command syntax and command set?

• What are the logging/reporting
capabilities of your tool? Do you have
to build these in?

• To what extent does the tool make it easy
for you to recover from errors (in the product
under test), prepare the product for further
testing, and re-synchronizethe product and
the test (get them operating at the same
state in the same program).

• .(In general, what kind of functionality will
you have to add to the tool to make it
usable?)

• .Is the quality of your product driven
primarily by regulatory or liability
considerations or by market forces
(competition)?

• .Is your company subject to a legal
requirement that test cases be
demonstrable?

• .Will you have to be able to trace test cases
back to customer requirements and to show
that each requirement has associated test
cases?

Copyright (c) Cem Kaner, 1998. All rights reserved. kaner@kaner.com 408-244-7000 Slide #13

27 Requirements Questions27 Requirements Questions

• Is your company subject to audits or
inspections by organizations that prefer to
see extensive regression testing?

• If you are doing custom programming, is
there a contract that specifies the
acceptance tests? Can you automate
these and use them as regression tests?

• What are the skills of your current staff?

• Do you have to make it possible for non-
programmers to create automated test
cases?

• To what extent are cooperative
programmers available within the
programming team to provide automation
support such as event logs, more unique
or informative error messages, and hooks
for making function calls below the UI
level?

• What kinds of tests are really hard in your
application? How would automation make
these tests easier to conduct?

Copyright (c) Cem Kaner, 1998. All rights reserved. kaner@kaner.com 408-244-7000 Slide #14

Six Successful ArchitecturesSix Successful Architectures

1. Quick & dirty

2. Data-driven

3. Framework

4. Application-independent data-driven

5. Real-time simulator with event logs

6. Equivalence testing: Random tests
using an oracle

Copyright (c) Cem Kaner, 1998. All rights reserved. kaner@kaner.com 408-244-7000 Slide #15

Data-Driven ArchitectureData-Driven Architecture

• The program’s variables are data

• The program’s commands are data

• The program’s UI is data

• The program’s state is data

Copyright (c) Cem Kaner, 1998. All rights reserved. kaner@kaner.com 408-244-7000 Slide #16

Data-Driven ArchitectureData-Driven Architecture

<<<Big Graphic Goes Here >>>CaptionTall rowboundingboxShort row

Copyright (c) Cem Kaner, 1998. All rights reserved. kaner@kaner.com 408-244-7000 Slide #17

Data-Driven ArchitectureData-Driven Architecture

C
ap

ti
o

n

lo
ca

ti
o

n

C
ap

ti
o

n

ty
p

ef
ac

e

C
ap

ti
o

n

st
yl

e

C
ap

ti
o

n

G
ra

p
h

ic

(C
G

)

C
G

 f
o

rm
at

C
G

 s
iz

e

B
o

u
n

d
in

g

b
o

x
w

id
th

1 Top Times Normal Yes PCX Large 3 pt.
2 Right Arial Italic No 2 pt.
3 Left Courier Bold No 1 pt.

Copyright (c) Cem Kaner, 1998. All rights reserved. kaner@kaner.com 408-244-7000 Slide #18

Data Driven ArchitectureData Driven Architecture

Note with this example:
• we never ran tests twice

• we automated execution, not evaluation

• we saved SOME time

• we focused the tester on design and
results, not execution.

Copyright (c) Cem Kaner, 1998. All rights reserved. kaner@kaner.com 408-244-7000 Slide #19

FrameworksFrameworks

Code libraries:
• modularity

• reuse of components

• hide design evolution of UI or tool
commands

• partial salvation from the custom control
problem

• important utilities such as error recovery

Copyright (c) Cem Kaner, 1998. All rights reserved. kaner@kaner.com 408-244-7000 Slide #20

Application-Independent ExampleApplication-Independent Example

Numeric Input Field
N

ot
hi

ng

LB
 o

f v
al

ue

U
B

 o
f v

al
ue

LB
 o

f v
al

ue
 -

 1

U
B

 o
f v

al
ue

 +
 1

0 N
eg

at
iv

e

LB
 n

um
be

r
of

 d
ig

its

or
 c

ha
rs

U
B

 n
um

be
r

of
 d

ig
its

or

 c
ha

rs

E
m

pt
y

fie
ld

 (
cl

ea
r

th
e

de
fa

ul
t v

al
ue

)

O
ut

si
de

 o
f U

B

nu
m

be
r

of
 d

ig
its

 o
r

ch
ar

s

N
on

-d
ig

its

Copyright (c) Cem Kaner, 1998. All rights reserved. kaner@kaner.com 408-244-7000 Slide #21

Two More Non-Regression ArchitecturesTwo More Non-Regression Architectures

• Simulator with event logs

• Random testing using an oracle.

Copyright (c) Cem Kaner, 1998. All rights reserved. kaner@kaner.com 408-244-7000 Slide #22

Think About:Think About:

• Automation is software development.

• Regression automation is expensive and
inefficient.

• Automation need not be regression--you can
run new tests instead of old ones.

• Maintainability is essential.

• Set management expectations with care.

Copyright (c) Cem Kaner, 1998. All rights reserved. kaner@kaner.com 408-244-7000 Slide #23

Los Altos WorkshopLos Altos Workshop
on Software Testing (LAWST)on Software Testing (LAWST)

Much of this material was developed at the first 3 meetings of
LAWST. These are non-profit (no charge, invitation-only)
meetings of experienced consultants and practitioners, in
which we share good practices and lessons learned on
tightly defined issues. LAWST 1-3 participants were:

Chris Agruss,Tom Arnold, James Bach, Richard Bender, Jim
Brooks, Karla Fisher, Chip Groder, Elizabeth Hendrickson,
Doug Hoffman, Keith Hooper, III, Bob Johnson, Cem Kaner
(host / founder of LAWST), Brian Lawrence (facilitator & co-
host of LAWST), Tom Lindemuth, Brian Marick, Thanga
Meenakshi, Noel Nyman, Jeffery E. Payne, Bret Pettichord,
Drew Pritsker, Johanna Rothman, Jane Stepak, Melora
Svoboda, Jeremy White, and Rodney Wilson.

