
 Copyright (c) 2003 Andy Tinkham & Cem Kaner. All Rights Reserved. 1

Exploring Exploratory Testing1
Andy Tinkham (FIT) andy@tinkham.org
Cem Kaner (FIT) kaner@kaner.com

This research was partially supported by NSF Grant EIA-0113539 ITR/SY+PE:
"Improving the Education of Software Testers." Any opinions, findings and conclusions
or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Foundation (NSF).

The IEEE Computer Society2 has been promoting a document called the Software
Engineering Body of Knowledge (SWEBOK)3. This document is positioned to be a
consensus document that focuses on generally accepted knowledge in software
engineering.

According to SWEBOK (pages 5-9), exploratory testing is “the most widely practiced
[testing] technique”. “Tests are derived relying on tester skill and intuition…and on
his/her experience with similar programs.” SWEBOK advises “a more systematic
approach” and says that exploratory testing “might be useful (but only if the tester is
really expert!) to identify special tests not easily ‘captured’ by formalized techniques.”

The SWEBOK’s treatment of exploratory testing reflects the degree of controversy and
confusion about exploratory testing in our field.

The fact is that every tester does exploratory testing. For example,

• When a tester finds a bug, she troubleshoots it a bit, both to find a simple set of
reproduction conditions and to determine whether a variant of these conditions
will yield a more serious failure. This is classic exploration. The tester decides
what to do next based on what she’s learned so far.

• When the programmer reports that the bug has been fixed, the tester runs the
original failure-revealing test to see if the fix has taken. But the skilled tester also
varies the regression test to see whether the fix was general enough and whether it
had a side effect that broke some other part of the program. This is exploratory
testing.

• When the tester first gets the product, with or without a specification, and tries out
the features to see how they work, and then tries to do something “real” with the
product to develop an appreciation of its design, this is exploratory testing.

Anyone who tests does exploratory testing, but some of us rely on exploration more
heavily and more effectively than others.

1 This research was partially support by grant EIA-0113539 ITR/SY+PE: "Improving the Education of
Software Testers."
2 But not the Association for Computing Machinery
3 Guide to the Software Engineering Body of Knowledge, Trial Version 1.00, May 2001,
http://www.swebok.org/documents/Trial_1_00/Trial_Version1_00_SWEBOK_Guide.pdf

 Copyright (c) 2003 Andy Tinkham & Cem Kaner. All Rights Reserved. 2

This difference in opinion is the result of a prevailing belief that exploratory testing is
primarily banging on the keyboard and avoiding the planning and work of “real” testing.
Many testers have a very limited perception of what really is exploratory testing. In this
paper, we hope to introduce the reader to a broader picture of what exploratory testing is
and some of the components that make it a useful and powerful technique.
This paper is an initial review within a larger project. Our goal is to develop an
understanding of the typical tasks involved in exploratory testing and the skills and
knowledge needed to perform these tasks. With that understanding, we can more
effectively train people to be strong exploratory testers.

What is Exploratory Testing?
Definitions of exploratory testing have been offered by James Bach4, Cem Kaner5, Brian
Marick,6 Elisabeth Hendrickson,7 and Chris Agruss and Bob Johnson.8 All of these
people have collaborated and polished each others’ views. In 1999, these authors (and
others) compared notes at the 7th Los Altos Workshop on Software Testing (LAWST VII)
and highlighted some of the common characteristics of their views. These characteristics
included:

• Interactive
• Concurrence of cognition and execution
• Creativity
• Drive towards fast results
• De-emphasize archived testing materials9

Bach also talks about tests spanning a continuum between purely scripted (in which the
tester does precisely what the test script specifies and nothing else) to purely exploratory
(in which the tester has no pre-planned activities to perform). Any given testing effort
falls somewhere on this continuum. By performing this mapping, the focus of the effort
becomes less “should we do exploratory testing?” than “to what degree is our testing
exploratory?” Even predominantly pre-scripted testing can be exploratory when
performed by a skilled tester. Any good tester will be alert to indications that something
is wrong in the program. Should they see one of these indications, the tester will depart
from the script they are executing and follow up on the problems hinted at by the
indication they saw.

From this perspective, an appropriate definition of exploratory testing is “Any testing to
the extent that the tester actively controls the design of the tests as those tests are
performed and uses information gained while testing to design new and better tests.” 10

4 For example, “Exploratory Testing Explained” at http://www.satisfice.com/articles/et-article.pdf
5 Black Box Testing course notes at http://www.testingeducation.org/
6 http://www.testing.com/exploratory.html
7 “Bug Hunting” course notes, received from the author
8 http://www.testingcraft.com/ad_hoc_testing.pdf
9 Pettichord, Bret, “An Exploratory Testing Workshop Report”, http://www.testingcraft.com/exploratory-
pettichord.html
10 James Bach, “Exploratory Testing Explained”, http://www.satisfice.com/articles/et-article.pdf

 Copyright (c) 2003 Andy Tinkham & Cem Kaner. All Rights Reserved. 3

We adopt that definition in this paper.

In the prototypic case (what Bach calls “freestyle exploratory testing”), exploratory
testers continually learn about the software they’re testing, the market for the product, the
various ways in which the product could fail, the weaknesses of the product (including
where problems have been found in the application historically and which developers
tend to make which kinds of errors), and the best ways to test the software. At the same
time that they’re doing all this learning, exploratory testers also test the software, report
the problems they find, advocate for the problems they found to be fixed, and develop
new tests based on the information they’ve obtained so far in their learning.

What do Exploratory Testers Know?
Exploratory testers as a whole are difficult to stereotype. While all exploratory testing is
based on knowledge (both the knowledge gained during the testing and the knowledge
the exploratory tester brings to the testing process), the knowledge that the exploratory
tester already has varies from person to person, just as with any sort of knowledge. For
example, some testers have a great deal of familiarity with the application or type of
application that they’re testing. Other testers may be familiar with the platform that the
application will run on or platforms similar to the one being used. Either of these testers
(or yet other testers) may have knowledge of the risks associated with a particular product
or platform type. Still others may have knowledge of specific test techniques or of tools
and materials that are available to them.

Some testers base their tests on a sense of risk and their knowledge of how products can
fail. This knowledge can come from many different places. Some of the knowledge these
testers have is experiential – the tester worked on a project where a certain bug was
found, and the tester remembers that bug and tests for it on future projects. The tester can
also draw on the experience of other people (when they are aware of it), and need not
have actually experienced the bug themselves. Bach has referred to the practitioners of
this style of exploratory testing as “mental packrats who horde memories of every bug
they’ve seen” and this image is quite fitting.

Exploratory testers may also draw on knowledge from training they’ve received (such as
Elisabeth Hendrickson’s techniques described in her Bug Hunting class) or from
published sources, such as articles on ways an application (or applications) failed or on
various testing techniques, or from published bug taxonomies (such as the one for online
shopping cart applications, created by Giri Vijayaraghavan11) that catalog ways software
can fail. James Whittaker12 and Alan Jorgenson13 have published work on attacks that can
be used to try to find certain types of bugs in an application.

11 In his master’s thesis, to be published at http://www.testingeducation.org. Also see “Bugs in Your
Shopping Cart: A Taxonomy”, by Giri Vijayaraghavan and Cem Kaner, at
http://www.testingeducation.org/articles/ , winner of the Best Paper award at the 15th International Software
Quality Conference
12 How to Break Software, Whittaker, James; Addison-Wesley, 2003, ISBN: 0-201-79619-8
13 “Software Design Based on Operational Modes” (available at http://www.cs.fit.edu/~tr/cs-2002-10.pdf)
and “Testing with Hostile Data Streams” (available at http://www.cs.fit.edu/~tr/cs-2003-03.rtf)

 Copyright (c) 2003 Andy Tinkham & Cem Kaner. All Rights Reserved. 4

Bach has developed a model, called the Satisfice Heuristic Test Strategy Model14, which
shows the types of knowledge used by explorers. In this model, the project environment,
the criteria defined for quality on the project, and elements of the product being tested,
combine with test techniques to affect the perceived quality of the product. (Kaner also
adds risk factors as a separate item that combines with the test techniques. Bach
subsumes these into the quality criteria.) The model consists of several components for
each of these elements and serves as a prompt that testers can use to determine the
information they need for the project and then work with that information once they get
it.

Each of these different areas of knowledge can be extremely helpful to an exploratory
tester. Previous knowledge specific to the actual product being tested often takes the form
of areas known to have been bug-ridden in the past or the tendency of the project team to
make certain kinds of errors. This knowledge can then be used to make sure that the areas
that historically have been problematic are given ample attention to ensure that any
current problems in those areas are found. The same type of thing applies for all the other
types of knowledge that a tester may have about a product, a platform or a combination
of the two.

How else do Exploratory Testers Differ?
Kaner takes the approach of looking more at the profiles of individual testers who seem
skilled at exploration and noticing that they show repeating patterns15. For example, a
subject matter expert is more likely to come up with scenarios that rely heavily on
knowledge of the product (focusing on product elements), while many testers master a
small set of high-payoff techniques and look for elements of the product where they can
apply them.

Other characteristics of exploratory testers also affect how they do their explorations.
Everything from a tester’s personality to her preferred learning styles to her past
experiences has an impact on how the tester perceives risk, how they think that an
application might fail, and how they design tests to find these failures and test for the
risks they see. These all look like different “styles” of explorations, and we think they are
separable in the sense, that, through training, you can (if you choose to) improve
someone on one of them without much improving the others. For example, we can train
someone to be a great interference tester or a great state model mapper, without having
them learn the possible pitfalls that a particular type of software could fall into. But,
ultimately, these styles are part of the broader toolkit and knowledge base shown in the
Satisfice model, and testers who gain breadth with experience come to master many of
these styles, instead of just one.

14 http://www.satisfice.com/tools/satisfice-tsm-4p.pdf
15 See Kaner’s professional black box testing course notes available at http://www.testingeducation.org/ for
more on the styles of exploratory testing and questioning strategies

 Copyright (c) 2003 Andy Tinkham & Cem Kaner. All Rights Reserved. 5

Questioning Strategies
Another way to approach the differences is to look at how various testers generate
questions. In terms of practical applications, this is really just another test technique.
However, we can use this technique to think about how we do testing instead of using the
technique for actually doing the testing. For example, suppose we viewed each test case
as a question we asked the product. These questions generally are of the form, “Can you
[the product] do this?” or “What happens if I do that?” Each question correctly answered
increases our confidence in the application. If we consider testing the application this
way, the problem of designing an appropriate set of test cases becomes a problem of
designing a set of questions that help us get the best information we can about the product
we’re testing. Just like test cases, the set of possible questions we could ask is infinite for
all practical purposes. We need to determine how we can generate a list of questions that
will prove to be fruitful and manageable. If we can determine a great list of great
questions, then finding tests to answer the questions might be straightforward.

Luckily for us, a great deal of research has been performed on how people generate great
questions to solve problems. For example, the CIA has developed a set of questions
called the Phoenix Checklist16. This set of questions is a list known as “context-free
questions” and is designed “to encourage agents to look at a challenge from many
different angles. Using Phoenix is like holding your challenge in your hand. You can turn
it, look at it from underneath, see it from one view, hold it up to another position, imagine
solutions, and really be in control of it.”17

The Phoenix checklist begins by looking at the problem that we’re trying to solve. It asks
things like “Why is it necessary to solve the problem?” and “What isn’t the problem?” to
help the user get a clear grasp of what they’re trying to accomplish and why. It then
moves on to asking about similar problems (either that the problem solver has already
solved, or problems which are similar in some aspect but easier to solve than the main
problem being solved). From there, the checklist moves on to the plan for solving the
problem, covering things like “What creative thinking techniques can you use to generate
ideas?” and “How many different ways have you tried to solve the problem?” Finally, the
checklist concludes with some questions that analyze the problem and solution to aid in
future problem solving and determining whether the proposed solution is successful.

The Phoenix Checklist questions are called “context free questions” because they can be
applied to any given context without changing the context of the problem they are being
used to solve. The CIA is also not the only group to investigate this type of approach to
problem solving. Donald Gauss and Gerald Weinberg look at the topic extensively in
their book, Exploring Requirements, and a search on the web yields many more results,
as well.

Another questioning strategy is the set of “newspaper questions” – the “who, what,
where, when, how, and why” questions used by reporters to get as many of the details for

16 Described in ThinkerToys, by Michael Michalko (pages 138-144)
17 ThinkerToys, page 139

 Copyright (c) 2003 Andy Tinkham & Cem Kaner. All Rights Reserved. 6

their stories as they can. This list of questions is also geared to help the problem solver
look at a problem from multiple angles and gain a better understanding of what they’re
trying to accomplish.

These strategies for investigating problems can be applied directly to exploratory testing.
The checklists can be directly applied to the application and may yield insight directly.
They also should be used to examine the testing process itself. Each testing organization
has a mission, and this mission can vary from testing group to testing group. This mission
corresponds to the problem they’re trying to solve. By applying context-free questions
and the newspaper questions to achieving its mission, a testing group can make as
efficient use of their time and resources as possible.

Ultimately, generating a list of questions is like generating a list of risks. You have to
find a way to translate the question to the test. Exploratory testers do that in the moment,
as they test.

The Role of Heuristics
Every decision that an exploratory tester makes is made under conditions of uncertainty
and insufficient knowledge. Because of this, all decisions have some probability of being
incorrect, and this probability means we can’t mechanically choose the next thing to do.
Instead, since each decision carries an element of risk, we turn to heuristics. Heuristics
are a tool that people use to help them make decisions.

The American Heritage Dictionary of the English Language (3rd ed.) defines the term
“heuristic” as “Of or relating to a usually speculative formulation serving as a guide in
the investigation or solution of a problem.” (It offers a second definition of “of, relating
to, or constituting an educational method in which learning takes place through
discoveries that result from investigations made by the student” which means that
exploratory testing is a highly heuristic process that uses heuristics.) Examining the first
definition shows us two interesting pieces. First, there’s the phrase “a guide in the
investigation or solution of a problem”. Heuristics are guidelines that help us clarify or
solve a problem (thus, in some ways, the Phoenix Checklist and newspaper questions are
heuristics). The other interesting part of the definition is the phrase “usually speculative”.
Speculation is never guaranteed to be right – when someone speculates on something, she
might be right or she might be far off base in her speculations. Heuristics are the same
way. They are guidelines, but they are only guidelines. No heuristic is guaranteed to be
applicable in every situation, and a heuristic that worked wonderfully in one situation
may only make another situation worse. It is up to the heuristic user to evaluate the
heuristics they consider using to determine whether a given heuristic is appropriate for
his current situation. Even the process of evaluating a heuristic for its applicability can be
an extremely useful process for helping an exploratory tester (or anyone else) to think
about what he is trying to accomplish from different angles and perhaps help the person
come up with a good solution to the problem at hand.

 Copyright (c) 2003 Andy Tinkham & Cem Kaner. All Rights Reserved. 7

Bach has developed a wide range of heuristics and decision rules18. These heuristics
either clearly describe what many of us believe testers actually do or seem to be
compellingly useful suggestions for what testers should do. For example, in Lessons
Learned in Software Testing, a list of heuristics for evaluating a test plan is presented.
These heuristics can be used to consider how a test plan “fulfills its functions and how it
meets the quality criteria.” For example, one of the heuristics listed is “Important
problems fast”. While it may usually be a good idea to organize a test effort so that the
most important problems are found as quickly as possible to allow ample time for fixing
them, there may be times when there’s a need to test for less important problems first.
Perhaps the marketing department wants screen shots to use in promoting the software, so
the test group needs to find cosmetic and usability problems first to give the marketing
department time to develop their materials with accurate screenshots, or maybe there is
an upcoming demo for senior management, so the test group is tasked to find the things
that senior management might pick up on and complain about, regardless of the
importance of the bugs. Just like any heuristic, there are times when it’s applicable and
times when it isn’t.

Other heuristics can guide a tester towards looking for specific kinds of failures. For
example, the Consistency Heuristics, which Bach talks about in the “General Function
and Stability Test Procedure” for Windows 2000 certification, illustrates ways that testers
can determine whether their application behaves in a consistent manner. For example,
one of the Consistency Heuristics is “consistent with comparable products”. A tester
using this heuristic to help guide his efforts would look at products similar to the one he
was testing, and determine how the other products performed tasks. He would then see if
the application he was testing did the same things in a consistent manner. This can be
especially important when one of the comparable products is the market leader, and the
tester’s company is hoping to attract users who are already used to how the leading
software does tasks.

Finally, heuristics can illustrate potential bugs directly. Bach’s “mental packrats” who
keep lists of every bug they’ve ever seen are using their lists of defects as heuristics. No
application will have every bug on their list (hopefully!), but the lists serve as guides to
the tester, helping her think of tests she might not have otherwise done.

For those of us who don’t have the memory to keep long lists of defects (or even for
those who do), risk taxonomies can serve as heuristics in guiding our tests. Taxonomies
such as the one in Testing Computer Software, 2nd ed.19 can serve as useful pointers to
help an exploratory tester think of new ways to test his application. In the authors’ lab at
the Florida Institute of Technology, additional bug taxonomies are being completed. Giri
Vijayaraghavan created the previously mentioned taxonomy for online shopping cart

18 Notably in Chapter 11 of Lessons Learned in Software Testing (Kaner, Bach, and Pettichord, 2002),
“General Functionality and Stability Test Procedure” (the Microsoft Windows 2000 Certification
procedure, at http://www.satisfice.com/tools/procedure.pdf), and “Heuristics of Testability” (at
http://www.satisfice.com/tools/testable.pdf)
19 (Kaner, Falk, Nguyen, 1999)

 Copyright (c) 2003 Andy Tinkham & Cem Kaner. All Rights Reserved. 8

applications. Ajay Jha is currently working on developing a similar list of bugs for
wireless handheld applications.

All of these taxonomies (and others) can be used to help a tester come up with more tests
for her own application than she might otherwise have done. To use one of these
taxonomies, a tester picks a risk off the list. She may pick a risk at random, or she may
work through the list in some sort of orderly progression. Once she has a risk in mind,
she starts to think about how the application she’s testing could fail in ways similar to the
risk. Having come up with ways in which her application could be subject to situations
like the risk she’s focusing on, she then thinks of tests that would show her whether those
particular situations exist for the application.
For example, suppose Ellen is a tester responsible for testing a currency conversion
program. This program updates its exchange rate data every 10 minutes from a central
server. Suppose that Ellen then chooses the “Simple factual errors” risk off the list in
Testing Computer Software. The description for this risk states “After a program changes,
updating screen displays is a low priority task. The result is that much onscreen
information becomes obsolete. Whenever the program changes visibly, check every
message that might say anything about that aspect of the program.” After reading the
description, Ellen brainstorms ways that this could apply to her application. She realizes
that if a user had entered a conversion and left the result up, the next update of exchange
rates from the server might not cause the result to update, even if there is a change in the
rate used for the user’s calculation. She then starts thinking about tests that could show
whether this happens or not, and decides to run a test where she does a conversion, then
leaves the result up, goes to the server and changes the exchange rate for the currency she
used, then wait for the update to occur back on her client machine, watching to see
whether the calculation gets updated to match the new rate. In this case, Ellen used the
risk idea as a heuristic to suggest a test case that she might not have otherwise tried.

Training Explorers
As mentioned at the beginning of this paper, the authors are working to determine how to
most effectively train people to be exploratory testers. It is obvious to us that exploratory
testing is not simply a matter of memorizing techniques. Exploratory testers need to draw
heavily on their creativity, memory of past events, and intuition. While many people may
be naturally gifted in these areas, that subset of the population is not the only group of
people who can be exploratory testers. Exercises that encourage participants to develop
their creativity, sharpen their memory, or focus their intuition will probably all play an
important role. These exercises will draw on the extensive literature in other fields and tie
these concepts into testing. One area in particular that we are considering is the
similarities between training exploratory testers and training actors to excel in
improvisational theater (or improv). When new students are brought into an improv class
(and particularly when the students are not professional actors), they often need to learn
how to express their creativity. A good improv actor also needs a memory of past events
(since the majority of elements in a scene are imaginary, all actors in the scene have to
remember the “reality” that has been created in the scene so far without visual cues to
remind themselves). Intuition also plays a key role in improv. In his book, Impro, Keith
Johnstone talks about having to train people to go with their intuition and their first

 Copyright (c) 2003 Andy Tinkham & Cem Kaner. All Rights Reserved. 9

thoughts when they perform an improvised scene, rather than second-guessing or
censoring themselves. Obviously, there are parallels with exploratory testing, and the
authors intend to investigate these parallels more fully.

Acknowledgements
We are grateful to the following people for the help they provided that led up to this
paper:

• James Bach
• Sabrina Fay
• Elisabeth Hendrickson
• Heather Tinkham
• The participants of LAWST VII (Brian Lawrence, III, Cem Kaner, Noel Nyman,

Elisabeth Hendrickson, Drew Pritzger, Dave Gelperin, Harry Robinson, Jeff
Payne, Rodney Wilson, Doug Hoffman, James Bach, James Tierney, Melora
Svoboda, Bob Johnson, Chris Agruss, Jim Bampos, Jack Falk, Hung Q. Nguyen,
and Bret Pettichord)

