
Software Testing as a Social Science
Cem Kaner, J.D., Ph.D.

Presentation at
TASSQ

October 2006

Course materials (video lectures, etc):
www.satisfice.com/moodle

www.testingeducation.org/BBST

Source Materials on the Disk

• These materials echo sites that James Bach, Scott Barber,
Tim Coulter, Rebecca Fiedler and I have been creating at
Florida Tech (www.testingeducation.org) and Satisfice
(www.satisfice.com) that give access to reusable content
and will host supervised courses. (Some of the Satisfice-
site courses will cost money, others will be free.)

• All my instructional materials are available, royalty-free,
under the Creative Commons license.

• Readings on-disk that are not authored by James or me
are copyrighted by others and we cannot grant Creative
Commons (or other distribution) rights in them to you.

Sample exam questionsSome instructional support material
AssignmentsSome readings
ActivitiesVideo lectures

We govern our work by analogy
● What is software testing like? Who should we look to

as our role models?
– Engineers?

● Mechanical?
● Electrical?

– Project managers?
– Process advocates / enforcers?
– Police? (enforce “the rules”)
– Manufacturing-quality assurance managers?
– Craftspeople?
– Artists?

Today’s Assertion

Much of the most significant testing work looks
more like applied psychology, economics,
business management (etc.) than like
programming

Social Science?
● Social sciences study humans, especially humans in

society.
– What will the impact of X be on people?
– Work with qualitative & quantitative research

methods.
– High tolerance for ambiguity, partial answers,

situationally specific results.
– Ethics / values issues are relevant.
– Diversity of values / interpretations is normal.
– Observer bias is an accepted fact of life and is

managed explicitly in well-designed research.

What’s a Computer Program?
● This year, I’m teaching intro programming.
● Texts define a “computer program” like this:

A program is a set of
instructions for a computer

Computer Program
A set of instructions for a computer?
–What about what the program is for?

–We could define a house as a collection
of construction materials assembled
according to house-design patterns.

–But I’d rather define it as something built
for people to live in.

Computer Program
A set of instructions for a computer?

Ignore these and lay groundwork
for the classic problems of software
engineering … in the first week of
the first programming class.

Intent
Stakeholders

A different definition
● A computer program is
– a communication
– among several humans and computers
– who are distributed over space and time,
– that contains instructions that can be

executed by a computer.

● The point of the program is to provide
value to the stakeholders.

Stakeholder
● A person
– who is affected by
– the success or failure of a project
– or the actions or inactions of a product
– or the effects of a service.

Stakeholders (Examples)
● Users
● Programmers whose code interacts with this

code
● Maintenance programmers
● Technical writers
● Trainers
● Tech support staff
● Translators
● Marketers
● Investors

Stakeholder
● Favored
– The people we want to satisfy

● Disfavored
– Example: an embezzler is a stakeholder in a

corporate finance system

Stakeholder

To know how to test something, you must
understand who the stakeholders are and how
they can be affected by the product or system
under test.

Quality is
value

to some person

– Jerry Weinberg

The Straw Man
Define system level software testing as functional,
focusing on verification of the program’s features,
preferably against an authoritative specification.

● Easy to understand.
● Easy to translate into low-skill work and

routine automation.
● Good sales feature for academics and

consultants who want to distinguish their
services from software testing.

● NOT what you want as your career path.

Ye Olde Straw Man
Define system level software testing as
– functional,
– focusing on verification of the program’s

features,
– preferably against an authoritative

specification.

Traditional Focus of Testing:
Find Software Errors

But an error:
– May or may not be a coding error
– May or may not be a functional error

(This was accepted by most good testing
practitioners that I knew as far back as 1983.)

The tester who looks only for coding errors
misses all of the other ways in which the

program is of lower quality than it should be.

Software Error

A bug is something that bugs
somebody.

James Bach

Specifications & Requirements
● What about the idea that a bug is a deviation from a specification

or a failure to meet a requirement?
– These MIGHT be bugs, but even if they are,

● Specs and requirements docs are
– Probably incomplete

● Individual attributes may be incompletely considered or
specified

● The set of attributes may be (always is) incomplete
– May be infeasible
– May be incompatible with other requirements or specifications
– May vary across stakeholders
– May change over time
– May not be authoritative

Software Error
An attribute of a software product
● that reduces its value to a favored stakeholder
● or increases its value to a disfavored

stakeholder
● without a sufficiently large countervailing

benefit.

Software Testing
● A technical investigation
● conducted to provide quality-related information
● about a software product
● to a stakeholder.

We used empirical methods
to learn about quality

It's kind of like CSI
MANY tools, procedures,
sources of evidence.

• Tools and procedures
don't define an
investigation or its goals.

• There is too much
evidence to test, tools are
often expensive, so
investigators must exercise
judgment.

• The investigator must pick
what to study, and how, in
order to reveal the most
needed information.

Information Objectives
● Find important bugs, to get them fixed
● Assess the quality of the product
● Help managers make release decisions
● Block premature product releases
● Help predict and control costs of product support
● Check interoperability with other products
● Find safe scenarios for use of the product
● Assess conformance to specifications
● Certify the product meets a particular standard
● Ensure the testing process meets accountability

standards
● Minimize the risk of safety-related lawsuits
● Help clients improve product quality & testability
● Help clients improve their processes
● Evaluate the product for a third party

Different objectives
drive you toward
different:
•Testing
techniques

•Testing-project
management
styles

•Results reporting
methods

•Politics on the
project

Test Techniques

Essentially, a test technique is a recipe
for generating tests

Test Techniques
● Examples of test techniques:
– Domain testing
– Function testing
– Risk-based testing
– Scenario testing
– Transaction-flow or state-model-based

testing
– User testing

Test Techniques
● There might be as many as 150 named

techniques
● Different techniques are useful to different

degrees in different contexts

Contexts Vary Across Projects
Testers must learn, for each new product:
– What are the goals and quality criteria for the project
– What skills and resources are available to the project
– What is in the product
– How it could fail
– What the consequences of potential failures could be
– Who might care about which consequence of what failure
– How to trigger a fault that generates the failure we're seeking
– How to recognize failure
– How to decide what result variables to pay attention to
– How to decide what other result variables to pay attention to in the event

of intermittent failure
– How to troubleshoot and simplify a failure, so as to better

(a) motivate a stakeholder who might advocate for a fix
(b) enable a fixer to identify and stomp the bug more quickly

– How to expose, and who to expose to, undelivered benefits, unsatisfied
implications, traps, and missed opportunities.

Sample Technique: Scenario Testing
The ideal scenario has several characteristics:
● The test is based on a story about how the

program is used, including information about the
motivations of the people involved.

● The story is motivating. A stakeholder with
influence would push to fix a program that failed this
test.

● The story is credible. It not only could happen in
the real world; stakeholders would believe that
something like it probably will happen.

● The story involves a complex use of the program
or a complex environment or a complex set
of data.

● The test results are easy to evaluate. This is
valuable for all tests, but is especially important for
scenarios because they are complex.

Note how different
this is from the use-
case-based scenario.

Use cases abstract out
the human issues,
such as motivation,
and focus on
sequence instead.

See John Carroll’s
work on scenario-
based design.

16 Vectors for Creating Scenarios
● Write life histories for objects in the system. How was the object created, what happens to it, how is

it used or modified, what does it interact with, when is it destroyed or discarded?
● List possible users, analyze their interests and objectives.
● Consider disfavored users: how do they want to abuse your system?
● List system events. How does the system handle them?
● List special events. What accommodations does the system make for these?
● List benefits and create end-to-end tasks to check them.
● Look at specific transactions that people try to complete, such as opening a bank account or sending

a message. List all the steps, data items, outputs, displays, etc.?
● What forms do the users work with? Work with them (read, write, modify, etc.)
● Interview users about famous challenges and failures of the old system.
● Work alongside users to see how they work and what they do.
● Read about what systems like this are supposed to do. Play with competing systems.
● Study complaints about the predecessor to this system or its competitors.
● Create a mock business. Treat it as real and process its data.
● Try converting real-life data from a competing or predecessor application.
● Look at the output that competing applications can create. How would you create these reports /

objects / whatever in your application?
● Look for sequences: People (or the system) typically do task X in an order. What are the most

common orders (sequences) of subtasks in achieving X?

Discovering Failure is Challenging
● Programmers find and fix most of their own

bugs
● What testers find are what programmers

missed.
● Testers are looking for the bugs that hide in

programmers’ blind spots.
● To test effectively, our theories of error have to

be theories about the mistakes people make and
when / why they make them.

Recognizing Failure is Challenging
● The phenomenon of inattentional blindness

– humans (often) don't see what they don't pay attention to
– programs (always) don't see what they haven't been told

to pay attention to
● This is often the cause of irreproducible failures. We paid

attention to the wrong conditions.
– But we can't pay attention to all the conditions

● The 1100 embedded diagnostics
– Even if we coded checks for each of these, the side effects

(data, resources, and timing) would provide us a new
context for the Heisenberg principle

● Our Tests Cannot Practically Address
All of the Possibilities

Recognizing Failure is Challenging

System
under

test

Program state

Intended inputs

System state and data

Configuration and
system resources

From other cooperating
processes, clients or servers

Monitored outputs

Program state

System state and data

Impacts on connected
devices / system resources

To other cooperating
processes, clients or servers

Based on notes from Doug Hoffman

And Even If We Demonstrate a Failure
That Doesn't Mean Anyone Will Fix It

● The decision to fix a bug is rooted in a cost / benefit
analysis

● The quality of the bug description (the effectiveness
of the tester) lies in its:
– Technical quality (scope and severity)
– Impact analysis (what are costs to who)
– Persuasiveness and clarity

A Few More Assertions
● Most testing metrics are human performance

metrics
– How productive is this tester?
– How good is her work?
– How good is someone else’s work?
– How long is this work taking them?

● These are well studied questions in the social
sciences and not well studied when we ignore
the humans and fixate on the computer.

Let’s Sum Up
● Is testing ONLY concerned with the human issues

associated with product development and product use?
– Of course not
– But thinking in terms of the human issues leads us

into interesting questions about
● what tests we are running (and why)
● what risks we are anticipating
● how/why these risks are important, and
● what we can do to help our clients get the

information they need to manage the project, use
the product, or interface with other professionals.

