
Exploratory Software Test Automation Copyright © 2010 Cem Kaner 1

Copyright (c) Cem Kaner 2010

These notes are partially based on research that was supported by NSF Grant
CCLI-0717613 “Adaptation & Implementation of an Activity-Based Online or
Hybrid Course in Software Testing.” Any opinions, findings and conclusions or
recommendations expressed in this material are those of the author(s) and do
not necessarily reflect the views of the National Science Foundation.

Investment Modeling

a Software Tester's Perspective
Cem Kaner, J.D., Ph.D.

Vice-President (Education), Association for Software Testing

Professor of Software Engineering, Florida Institute of Technology

VISTACON, HCMC VIETNAM, SEPTEMBER 2010

Exploratory Software Test Automation Copyright © 2010 Cem Kaner 2

Every few years, someone gets the bright idea that what our field really needs is
an emphasis on automated regression testing with tests that are focused
specifically on written customer requirements, ideally developed as the
requirements come in.

These days, I hear this tired, heavyweight approach marketed as "agile, lean,
automated, acceptance-test-driven development." Huh? I thought this was what
TDD (within XP) was trying to replace.

Oh well. To quote Peter Pan (and Battlestar Galactica),

"All of this has happened before, and it will all happen again."

I want to remind you of a different recurring theme involving test automation: using
technology to help us learn things about the quality of the software that we don't
already know, running new tests all the time so that we keep learning throughout
testing.

The latest buzzphrase for this is "automated exploratory testing."

More specifically, I'm going to talk about applying test techniques to the evaluation
of the models we build into software, to help us decide whether we are building the
right thing, to address validation and accreditation of software instead of burying
our heads in verification. (You can use automated exploratory techniques for high-
powered verification too, but we won't have time for that in this presentation.)

Exploratory Software Test Automation Copyright © 2010 Cem Kaner 3

“Trailing stops saved me a pantload”

Some people wonder whether I am talking about software testing.

http://www.youtube.com/watch?v=mDm6iKH38C0

Trailing stops are a feature of the E-Trade software and of most
other trading software.

• Buy stock at $10

• Set a 10% trailing stop

• If stock drops 10% (to $9), automatically sell

• If stock rises 10% (to 11), then drops 10% (to $9.90) sell

This is automated trading.

Well over 50% of trades in US equity exchanges are automated.

Trillions of dollars are at risk when this software goes wrong.

http://www.youtube.com/watch?v=mDm6iKH38C0

Exploratory Software Test Automation Copyright © 2010 Cem Kaner 4

Overview
1. Testers provide empirical research services, exposing quality-

related information to our clients.

2. We play a major role in determining:

• How valuable our research is for our clients

• How much our clients will value our work

3. We can increase our value, if we can:

• Find problems that have greater impact on the business, or

• Use technology to find problems that are hard to find by hand

4. It's hard to reach these in software testing courses and books:

• Deeper testing requires product knowledge. It can take a long
teaching time to build enough product insight for a student tester to
understand tests at that level

• Exploratory test automation architectures call for deeper levels of
technical sophistication than we can reach in most testing courses.

Exploratory Software Test Automation Copyright © 2010 Cem Kaner 5

Overview - 2
• A year ago, I realized that remarkably many working professionals

(and American university students) had some familiarity with the
stock market.

• This presentation is the result of almost two year's work (so far)
gaining an understanding of this domain and of how it might be used
as a teaching foundation for complex issues in testing and high-
reliability programming

Exploratory Software Test Automation Copyright © 2010 Cem Kaner 6

Software testing
• is an empirical

• technical

• investigation

• conducted to provide stakeholders

• with information

• about the quality

• of the product or service under test

We design and run

tests in order to

gain useful

information about

the product's

quality.

Empirical? -- All tests are experiments.

Information? -- Reduction of uncertainty. Read Karl Popper

(Conjectures & Refutations) on the goals of experimentation

Exploratory Software Test Automation Copyright © 2010 Cem Kaner 7

Commodity-Level Software Testing

You are a commodity if:

• your client perceives you as equivalent to
the other members of your class

Commodity testers:

• have standardized skills / knowledge

• are easily replaced

• are cheaply outsourced

• add relatively little to the project

Commodities

There are green bananas

and ripe bananas

and rotten bananas

and big bananas

and little bananas.

But by and large,

a banana is a banana.

Commodity testers have little on-the-job control over their pay, status, job

security, opportunity for professional growth or the focus of their work.

Exploratory Software Test Automation Copyright © 2010 Cem Kaner 8

Typical Testing Tasks
Analyze product & its risks

• benefits & features

• risks in use

• market expectations

• interaction with external S/W

• diversity / stability of platforms

• extent of prior testing

• assess source code

Develop testing strategy

• pick key techniques

• prioritize testing foci

Design tests

• select key test ideas

• create tests for each idea

Run test first time (often by hand)

If we create
regression tests:

• Capture or code steps
once test passes

• Save “good” result

• Document test / file

• Execute the test

– Evaluate result

° Report failure or

° Maintain test
case

Evaluate results

• Troubleshoot failures

• Report failures

Manage test environment

• set up test lab

• select / use
hardware/software
configurations

• manage test tools

Keep archival records

• what tests have we run

• trace tests back to specs

This contrasts the variety of tasks commonly done in

testing with the narrow reach of UI-level regression

automation. This list is illustrative, not exhaustive.

Exploratory Software Test Automation Copyright © 2010 Cem Kaner 9

Automating system-level testing tasks

No testing tool covers this entire range of
tasks

In automated regression testing:

• we automate the test execution, and a
simple comparison of expected and
obtained results

• we don’t automate the design or
implementation of the test or the
assessment of the mismatch of results
(when there is one) or the maintenance
(which is often VERY expensive).

• So, the key design question is, where do
we need the most assistance?

"GUI-level automated

system testing"

doesn't mean

"GUI-level automated

system testing"

means

Exploratory Software Test Automation Copyright © 2010 Cem Kaner 10

GUI-Level Regression Testing:
Commodity-Level Test Automation

• addresses a narrow subset of the universe of testing tasks

• re-use existing tests

– a collection of tests that have one thing in common: the
program has passed all of them

– provide little new information about the product under test

– tests are rarely revised to become harsher as the product
gets more stable, so the suite is either too harsh for early
testing or too simplistic / unrealistic for later testing

– tests often address issues (e.g. boundary tests) that would
be cheaper and better tested at unit level

• enormous maintenance costs

– several basic frameworks for reducing GUI regression
maintenance are well understood

Exploratory Software Test Automation Copyright © 2010 Cem Kaner 11

Regression testing

• We do regression testing to check whether problems that the
previous round of testing would have exposed have come into
the product in this build.

– Sometimes we are testing to confirm old bugs stay fixed, but
most of that risk has been mitigated with modern
configuration management practices

• We are NOT testing to confirm that the program "still works
correctly"

– It is impossible to completely test the program, so

° we never know that it "works correctly"

° we only know that we didn't find bugs with our previous
tests

Exploratory Software Test Automation Copyright © 2010 Cem Kaner 12

Regression testing

• A regression test series:

– has relatively few tests

° tests tied to stories, use cases, or specification paragraphs
can be useful but there are not many of them. They do not
fully explore the risks of the product.

– every test is lovingly handcrafted (or should be) because we
need to maximize the value of each test

Exploratory Software Test Automation Copyright © 2010 Cem Kaner 13

Regression testing

• The decision to automate a regression test is a matter of
economics, not principle.

– It is profitable to automate a test (including paying the
maintenance costs as the program evolves) if you would run
the manual test so many times that the net cost of
automation is less than manual execution.

– Many manual tests are not suitable for regression automation
because they provide information that we don’t need to
collect repeatedly

– Few tests are worth running on every build.

Exploratory Software Test Automation Copyright © 2010 Cem Kaner 14

Cost/benefit the system regression tests

COSTS

• Maintenance of UI / system-level tests is not free

• In practice, we have to do maintenance -- often involving a
rewrite of the entire test -- many times.

• We must revise the test, whenever

– the programmers change the design of the program, even in
relatively minor ways.

– we discover an inconsistency between the program and the
test (and the program is correct)

– we discover the problem is obsolescence of the test

– we want to integrate new data or new conditions

Exploratory Software Test Automation Copyright © 2010 Cem Kaner 15

Cost/benefit the system regression tests

BENEFITS?

• What information will we obtain from re-use of this test?

• What is the value of that information?

• How much does it cost to automate the test the first time?

• How much maintenance cost for the test over a period of time?

• How much inertia does the maintenance create for the project?

• How much support for rapid feedback does the test suite
provide for the project?

In terms of information value, many tests that offered new data
and insights long ago, are now just a bunch of tired old tests in a
convenient-to-reuse heap.

Exploratory Software Test Automation Copyright © 2010 Cem Kaner 16

The concept of inertia

INERTIA: The resistance to change that we build into a project.

The less inertia we build into a project, the more responsive the
development group can be to stakeholder requests for change
(design changes and bug fixes).

• Process-induced inertia. For example, under our
development process, if there is going to be a change, we
might have to:

° rewrite the specification

° rewrite the related tests (and redocument them)

° rerun a bunch of regression tests

• Reduction of inertia is usually seen as a core objective of
agile development.

Exploratory Software Test Automation Copyright © 2010 Cem Kaner 17

What level are you working at? (Some Examples)
CHECKING • Testing for UI implementation weakness (e.g. boundary tests)

• Straightforward nonconformance testing
• Verification should be thought of as the handmaiden to validation

BASIC EXPLORATION • Quicktests
• Straightforward tours to determine the basics of the product, platform, risks, etc.
• Here, we are on the road to validation (but might not be there yet)

SYSTEMATIC
VARIATION

• Conscious, efficiently-run sampling strategy for testing compatibility with big pool of
devices / interoperable products / data-sharing partners, etc.

• Conscious, efficiently-run strategy for assessing data quality, improving coverage (by
intentionally-defined criteria)

BUSINESS
VALUE

• Assess the extent to which the product provides the value for which
it was designed, e.g. via exploratory scenario testing

EXPERT
INVESTIGATION

• Expose root causes of hard to replicate problems
• Model-building for challenging circumstances (e.g. skilled performance testing)
• Vulnerabilities that require deep technical knowledge (some security testing)
• Extent to which the product solves vital but hard-to-solve business problems

Exploratory Software Test Automation Copyright © 2010 Cem Kaner 18

In our track talk, Doug & I discussed examples and

general ideas of automated exploratory testing.

Exploratory Software Test Automation Copyright © 2010 Cem Kaner 19

One of the

motivators for

me to study

this area was

the challenge

of helping my

students find

work.

Finance has

grown to 7% of

the US

economy (up

from about 3%)

while other

sectors have

been shrinking.

Exploratory Software Test Automation Copyright © 2010 Cem Kaner 20

Reports like this have been catching my attention:

4 Jul 2009, 2105 hrs IST, REUTERS,
http://economictimes.indiatimes.com/articleshow/4777281.cms?prtpage=1

NEW YORK: The average Goldman Sachs Group Inc employee is within striking
distance of $1 million in compensation and benefits this year, just nine months
after the bank received a $10 billion US government bailout.
The figure will likely fuel criticism of the politically connected bank, especially
amid the widening recession and rising unemployment. In addition to the bailout,
Wall Street's biggest surviving securities firm also benefited from several other
government schemes during the depths of last year's financial crisis.

Goldman on Tuesday said money set aside for pay surged 75 percent in the
second quarter. Compensation and benefits costs were $6.65 billion, up 47
percent from the equivalent quarter in 2008.

Given a 16 percent reduction in staff from last year, to 29,400, the bank set
aside an average $226,156 per employee in the second quarter, up from
$129,200 in a year ago. If the quarterly figure is annualized, it comes to

.

Exploratory Software Test Automation Copyright © 2010 Cem Kaner 21

A Critical Distinction

• People who create (or use) (or improve) technology to model
the market are called " "

• People who write (or test) code are called " "

Exploratory Software Test Automation Copyright © 2010 Cem Kaner 22

http://www.cnbc.com/id/18724672/

http://www.thestreet.com/tsc/emails/2009/rm_email_test_091909.html

Non-

profession

al investors

often rely

on

advisors,

and hope

to beat the

market by

following

the advice

Exploratory Software Test Automation Copyright © 2010 Cem Kaner 23

Other individual investors rely on tools...

http://www.youtube.com/watch?v=lb_h_mwKk-o

http://www.youtube.com/watch?v=Whq4uQl2lYI&NR=1

http://www.vectorvest.com/freemovies/demo/vectorvestproducttour/vectorvestproducttour.html

(NOTE: I use

VectorVest in several

examples because I

liked it enough to

research it more

carefully than its

competitors.

Despite my critical

comments, you

should understand

that this product

offers significant

benefits, especially

in the accessibility of

its highly detailed

historical

fundamentals data.)

Exploratory Software Test Automation Copyright © 2010 Cem Kaner 24

VectorVest
Strategies

There are about 250
of these, tailored for

different expectations
about market
performance.

Exploratory Software Test Automation Copyright © 2010 Cem Kaner 25

Strategy of the
Week!

Suppose we sell a trading
system with 250 strategies,
and analyze the population
every week to see which
ones performed well.

What if all 250 were no
better than a Motley-Fool
dartboard? How many
should perform statistically
significantly better than the
market?

(Answer -- 12.5, at the p <=
.05 level of significance)

Exploratory Software Test Automation Copyright © 2010 Cem Kaner 26

Hmm...

What should

we call the

recommendations

that didn’t make

money?

Exploratory Software Test Automation Copyright © 2010 Cem Kaner 27

“COLOR GUARD” on the front page seems to be VectorVest's most unique and
important feature. This box speaks to the overall timing of the market:

• VVC Price is the average price of the vector vest composite (the 8013 stocks
in the VV database). They use it as an index, like S&P or Dow Jones

• VVC RT is the “relative timing” of the market. The market is on a rising trend
for RT > 1 and a declining trend for RT < 1. Based on its published formula
(ratios of random variables), I would expect this to have an odd probability
distribution.

Exploratory Software Test Automation Copyright © 2010 Cem Kaner 28

• BSR is the ratio of the number of stocks rated buy to the number of stocks
rated sell in the VV database – ignoring the number rated hold. Suppose VV
puts “hold” ratings on 8008 stocks, a Buy rating on 4 and a sell rating on 1, I
would think this is a flat market, but with a 4-to-1 ratio of buys to sells (ignore
the 8008 holds), BSR would have a value of 4.0, a seemingly huge value.

• MTI is the overall Market Timing Indicator and the is described in VectorVest
tutorials as a key predictor in their system.

Exploratory Software Test Automation Copyright © 2010 Cem Kaner 29

• The color system is summary of trends over the past few days / few weeks.

• According to VectorVest:

– yellows mean there is no trend to follow,

– red means the market is declining and you should NOT buy anything
tomorrow, and

– green means the market is rising and you feel good about buying.

Exploratory Software Test Automation Copyright © 2010 Cem Kaner 30

VectorVest in their own words

Exploratory Software Test Automation Copyright © 2010 Cem Kaner 31

VectorVest in their own words

from ... THE COLOR GUARD, CLARIFIED

Bart DiLiddo (VectorVest founder)

Exploratory Software Test Automation Copyright © 2010 Cem Kaner 32

A little research
To study the ColorGuard system as a predictor of the market, I
downloaded Standard and Poors' S&P-500 index prices from January 4,
1999* through early Sept 2009.

I then computed percentage price changes:

• percent gain or loss in the S&P compared to the current day

• percent gain or loss between the current day value and the value 5
trading days from the current day.

• after 15 trading days

• after 30 trading days.

I also looked at 2-day, 3-day and 4-day for some analyses, but the
results were the same as 1-day and 5-day so I stopped bothering.

• The average day-to-day change in the market was 0.0027% (flat over
10 years)

* Available ColorGuard data appeared to start in late 1998

Exploratory Software Test Automation Copyright © 2010 Cem Kaner 33

Results
From 1999 to September 2009:

• 289 trading days rated / / () (buy)

• 285 rated / / (don't buy).

• After days, S&P index went an average of

the day after a rating,

five days after,

15 days after, and

30 days after.

• After days, S&P went an average of

the day after an ,

five days after,

15 days after and

in the 30 days after an

Exploratory Software Test Automation Copyright © 2010 Cem Kaner 34

Time to think about testing
Imagine these roles:

• individual investor trying to avoid making terrible mistakes and
losing all her retirement money

• technical expert, hired by Securities & Exchange Commission to
help them investigate stock-market related fraud

• analyst helping an investment firm assess effectiveness of
investment strategies

• individual investor trying to assess effectiveness of investment-
guidance tools that he is writing

• analyst working at an investment firm that creates/sells
investment-guidance tools:

– writing the code

– evaluating the usability and basic dependability of the
product

– evaluating the effectiveness of the product

These are

all testing

roles

Exploratory Software Test Automation Copyright © 2010 Cem Kaner 35

Simplistic,
but commonly recommended,

buy/sell rules
• Buy in the early morning (market open), sell at market close (in a

generally rising market)

– (How do you know if you're in a generally rising market?)

• Buy at close, sell the next morning (in a generally declining
market)

• Buy a stock when it drops more than D% in one day and sell it
back when the stock regains ½ of its loss

• Buy a stock when it hits a 52-week high and sell (a) after B% (e.g.
25%) rise or 10% trailing stop

Exploratory Software Test Automation Copyright © 2010 Cem Kaner 36

Assessing a Model

1. start with a plausible hypothesis

– in practice, this is the hardest step and the one that requires
the most investigation

2. decide what data to test it on

3. get the data

4. what's the right test?

5. if the model proves itself wrong

– study the fine grain of the data for evolution to next model

6. if model appears right

– what replications are needed, on what data, to check this
further?

Exploratory Software Test Automation Copyright © 2010 Cem Kaner 37

1. Start with a plausible hypothesis

• in practice, this is the hardest step and the one that requires the
most investigation

• For now, let's select this heuristic:

(reflects market optimism?)

Exploratory Software Test Automation Copyright © 2010 Cem Kaner 38

• Should we test on individual stocks or an aggregate?

– If individual, should we sample from a specific pool (e.g.
Wireless Internet stocks (think iPhone) might behave
differently from consumer stocks like Taco Bell)?

– How should we select from the pool?

• What time interval should we test on?

– generally rising?

– generally falling?

– based on indicators (like consumer confidence)?

– random?

2. Decide what data to test it on

Exploratory Software Test Automation Copyright © 2010 Cem Kaner 39

• To simplify
our
example,
let's choose
the
Standard &
Poors index

• from March
9 to present
(when I
wrote this,
September
2009)

2. Decide what data to test it on

Exploratory Software Test Automation Copyright © 2010 Cem Kaner 40

3. Get the data

• In this
case,
getting
the
data is
easy.

• Yahoo
has it.

Exploratory Software Test Automation Copyright © 2010 Cem Kaner 41

3. Get the data

• But how
do we
know that
it's right?

• (This is a
serious
problem
across
different
data
sources)

Exploratory Software Test Automation Copyright © 2010 Cem Kaner 42

4. What's the right test?

• My test is to calculate

delta = Closing index value - Opening index value

for every day in the time period

and then calculate average delta per day

Exploratory Software Test Automation Copyright © 2010 Cem Kaner 43

5. If the model proves itself wrong
Can we strengthen the predictable-rise-during-the-day hypothesis?

• study the fine grain of the data

• decide whether the hypothesis is wrong or incomplete

• if incomplete:

– vary conditions as (potentially) appropriate

° If the underlying theory is a daily rise due to optimism

» should we buy only when Consumer Confidence is up (we do have historical data)?
» should we focus on stocks recently upgraded by analysts?
» what else could enhance a general optimism, increasing its impact for a specific

stock or industry or sector?
» What if we tried EVERY variable?

Exploratory Software Test Automation Copyright © 2010 Cem Kaner 44

6. If the model appears right
What replications are needed, on what data, to check this further?

• Replications on rising markets in previous years?

• Replications on falling markets?

• Replications on broader market (S&P is a 500-stock subset of
15,500 stock market)

• Replication across geographic segments (Chinese stocks?
Israeli stocks? UK stocks?) (Do these add noise that should be
chopped from our buying strategy?)

Exploratory Software Test Automation Copyright © 2010 Cem Kaner 45

Another Example: Buying the Dividend
Buying Dividends: Top 7 Stocks Going Ex-Dividend Next Week

One way that you can earn very high returns is utilizing a technique called 'buying dividends'.
Buying dividends is the process of buying a stock just before it goes ex-dividend and selling it
shortly after the ex-dividend date at the same [or at a higher] price as the cost price. The ex-
dividend date is the date after which a buyer of the stock is no longer entitled to the dividend.
In other words, if an investor purchases a stock on or after the ex-dividend date, the investor
will not receive the dividend; however, if the stock is purchased prior to the ex-dividend date,
the investor will receive the dividend on what is called the payment date. Another way to look
at it is an investor can sell a stock on the ex-div date or later and still get the dividend.

Does it work? Let me give you an example. Last month, I bought United Online Inc. (UNTD)
for 10.89 per share on April 11 and sold it on May 12, the ex-dividend date, for 11.56 per
share, a return of over 6% before commission and before adding in the dividend, but that's
really not relevant. The stock pays a dividend of 20 cents per share, which provided a return
of 1.8% over 30 days. Annualized, it worked out to about 22%.

But I need not have tied up my money for a month. I could have bought the stock for 11.31
[closing price] on Friday, May 9, and sold it Monday, May 12, for 11.91 [closing price]. The
gain on the stock was 60 cents, plus the 20 cent dividend is a return of 80 cents or 7% over a
period of three days [before commission]. The annualized return is ridiculously high at 860%.
But even if you broke even on the purchase and sale price, just the return on the dividend
provided a 215% annualized return.

http://stockerblog.blogspot.com/2008/05/buying-dividends-top-7-stocks-going-ex.html lose?

Exploratory Software Test Automation Copyright © 2010 Cem Kaner 46

Capital Product Partners:
Typical dividend: 41 cents. Typical decline: $1 to $2

Exploratory Software Test Automation Copyright © 2010 Cem Kaner 47

What do we do with this?
• When I teach investment modeling, I have my students try to

implement a buy-the-dividend strategy.

– They lose “money”

• Next, they search the market for differentiators that can separate
high-dividend stocks that are:

– Buy the dividend candidates

– Sell the dividend candidates

– Stocks with no useful pattern

• As an easy differentiator to consider:

– CPLP pays out more than it earns. Each quarter:

° Before it announces the dividend, it’s hard to believe it will offer
such a high dividend again (stock rises on announcement)

° After it pays the dividend , it’s hard to believe it will offer such a
high dividend again (stock falls on payment)

Exploratory Software Test Automation Copyright © 2010 Cem Kaner 48

Why do we care?

• Each buy/sell rule reflects an underlying model of the market’s
historical behavior

• But in an “investment program”, each implemented strategy is
implemented as a feature of the program

• So if we are testing an investment program (financial services
are now a huge part of our economy), we are testing each
strategy

Exploratory Software Test Automation Copyright © 2010 Cem Kaner 49

“Trailing stops saved me a pantload”
http://www.youtube.com/watch?v=mDm6iKH38C0

Trailing stops are generally set to sell at market price (whatever you can get at
this time).

At any point in time, we have supply and demand for a stock.

• We can subscribe to services that show the backlog of orders for a stock.
There might be orders for 1000 shares at $10.00, 1200 shares at $9.99, 300
at $9.97, 500 at $9.95, 200 at $9.90, 500 at $9.85, 1000 at $9.70, and 1000
at $9.00.

• If we offer 15000 shares “at market”, we sell 5700 shares for $9.00 to $10.00
and are looking for buyers for the other 9300 shares. The sharp drop and the
low price of the last trade ($9) invite more lowball orders, so the price keeps
dropping until someone buys out all that’s left.

• In the meantime, trailing stops get triggered as the price drops, adding to the
supply of stock for sale and driving the price down even further.

Because of the prevalence of trailing stops, one big sell order across many
stocks (S&P futures) might have triggered or contributed to a cascading
automated selloff.

http://www.youtube.com/watch?v=mDm6iKH38C0

Exploratory Software Test Automation Copyright © 2010 Cem Kaner 50

And how beneficial are trailing stops anyway?

Exploratory Software Test Automation Copyright © 2010 Cem Kaner 51

Assessing Models: Seven Risks
Model risk The model is theoretically incorrect.

Characterization

risk

The model is correct, but the description of it (the specification)

has errors.

Comprehension

risk

We misunderstand the model. Our code accurately implements

the wrong model

Implementation

risk

Coding errors. Data storage / retrieval errors. Our code

inaccurately reflects our intent.

Execution /

environmental

risk

We attempt the correct trade but the software / hardware

platform is too slow, cannot handle the data volume, the data

feed is too slow, etc. As a result, we fail in our efforts to buy or

sell at the desired price.

Tool risk Our test tool misleads us by corrupting the software under test

or by missing failures or by giving us false alarms

Scope risk Our model is properly developed but it is not appropriate to

today’s circumstances. Can we recognize when market activity

is out of scope of our model?

Exploratory Software Test Automation Copyright © 2010 Cem Kaner 52

Verification is insufficient
Model risk The model is theoretically incorrect. Validation

Characterization
risk

The model is correct, but the description of it (the
specification) has errors.

Validation of the
software; Verification
of the spec

Comprehension
risk

We misunderstand the model. Our code accurately
implements the wrong model

Implementation
risk

Coding errors. Data storage / retrieval errors. Our code
inaccurately reflects our intent.

Execution /
environmental risk

We attempt the correct trade but platform is too slow, cannot
handle data volume, data feed too slow, etc. As a result, we
fail in our efforts to buy or sell at the desired price.

Parafunctional

Tool risk Our test tool misleads us by corrupting the software under
test or by missing failures or by giving us false alarms

Scope risk Can we recognize when market activity is out of scope of
our model?

Validation

Exploratory Software Test Automation Copyright © 2010 Cem Kaner 53

Let's stop the investment example here.

What does it show us?

Exploratory Software Test Automation Copyright © 2010 Cem Kaner 54

The investment example
• When we study "computing" as a general field (or software testing)

(or software engineering) we often abstract away the underlying
complexities of the subject matter we are working in.

• A computer program is not just "a set of instructions for a computer."
It is an attempt to help someone do something. The program:

– makes new things possible, or

– makes old things easier, or

– helps us gain new insights, or

– brings us new experiences (e.g. entertainment)

• Programs provide value to companies

– Some programs tie directly to the core value-generating or risk-
mitigating activities in the company

– Especially in organizations that see computing as a technology
rather than as a goal in itself, your value to the organization rises if
your work actively supports the business value of the software.

Exploratory Software Test Automation Copyright © 2010 Cem Kaner 55

Investment example

• Every evaluative step in this example involved testing

• This work requires extensive technical knowledge, but

– "technical" = the conceptually difficult areas in the business domain

– "technical" ≠ programming

• For years, the highest paid testers on Adobe Illustrator were graphic artists

• For several years at WordStar, the most senior tester was a printer expert

• Consider what testing you could do if you deeply understood:

– actuarial mathematics (insurance risk modeling)

– the technology (e.g. data mining) and psychology of customer
relationship management and sales prospecting

– taxation systems (e.g. as applied in employee compensation software)

– airline reservation systems

– the human factors of creative work (draw / video / text / music)

Exploratory Software Test Automation Copyright © 2010 Cem Kaner 56

Now, Back to Automation
• Many people in our field are trapped in a mental box that says:

– test automation Ξ automated execution of regression tests

• This is a commodity role

– automated execution of regression tests, is narrow in scope, redundant with
prior work

– The style of testing often promoted as "professional" is adversarial,
inefficient, relatively unskilled, and easy to outsource

• In previous talks, I've emphasized "high volume test automation" as
applied to such areas as telephony, printer firmware and other
embedded control systems, and assessment of mathematical

computations.

–Lots of test automation, but no regression testing

–http://www.kaner.com/pdfs/HVAT_STAR.pdf

Exploratory Software Test Automation Copyright © 2010 Cem Kaner 57

The Tasks of Test Automation
• Theory of error

What kinds of errors do we hope to
expose?

• Input data

How will we select and generate input data
and conditions?

• Sequential dependence

Should tests be independent? If not, what
info should persist or drive sequence from
test N to N+1?

• Execution

How well are test suites run, especially in
case of individual test failures?

• Output data

Observe which outputs, and what
dimensions of them?

• Comparison data

IF detection is via comparison to oracle
data, where do we get the data?

• Detection

What heuristics/rules tell us there might be
a problem?

• Evaluation

How decide whether X is a problem or
not?

• Troubleshooting support

Failure triggers what further data
collection?

• Notification

How/when is failure reported?

• Retention

In general, what data do we keep?

• Maintenance

How are tests / suites updated / replaced?

• Relevant contexts

Under what circumstances is this approach
relevant/desirable?

Exploratory Software Test Automation Copyright © 2010 Cem Kaner 58

Closing Thoughts
• Especially in difficult economic times, it is important for:

– testers to ask how they differentiate their own skills, knowledge, attitudes
and techniques from commodity-level testers

– test clients to ask how they can maximize the value of the testing they are
paying for, by improving their focus on the problems most important to the
enterprise

• In this talk, we looked at testing as an analytic activity that helps the other
stakeholders understand the subject domain (here, investing), the models
they are building in it, and the utility of those models and the code that
expresses them.

– We see lots of test automation, but no regression testing.

• Rather than letting yourself get stuck in an overstaffed, underpaid, low-skill
area of our field, it makes more sense to ask how, in your application's
particular domain, you can use tools to maximize value and minimize risk.

– High value test automation, probably not much regression testing.

