
Risk-Based Testing: Some Basic Conceptss ased est g: So e as c Co cepts

QAI Managers Worksho A ril 2008QAI Managers Workshop, April 2008

Cem Kaner, J.D., Ph.D.
Professor of Software Engineeringo esso o So twa e g ee g
Florida Institute of Technology

These notes are partially based on research that was supported by NSF Grant CCLI-0717613
“Adaptation & Implementation of an Activity-Based Online or Hybrid Course in Software Testing.”
Any opinions findings and conclusions or recommendations expressed in this material are those of

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 1

Any opinions, findings and conclusions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the National Science Foundation.

For more:
My website, www.testingeducation.org/BBST provides a large set of
videos and slides on testing concepts and techniques. These materials
are FREE: you can download them and use them in your own courses or
in study groups with your coworkers.

The CD includes some of these materials along with a few additional
source documents:

• Videos and slides (and papers) on

– Risk-based testing, including M.Sc. Theses by Ajay Jha and Giri
Vij h ill t ti f il d l f ftVijayaraghavan illustrating failure mode analyses for software.

– Specification-based testing

– Scripted testingScripted testing

• Slides and papers on

– Exploratory testing

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 2

Risk: The possibility of suffering harm or loss
In software testing, we often think of risk on three dimensions:

• A way the program could fail (technically, this is the hazard, or the
failure mode, but I’ll often refer to this as the risk because that is ,
so common among testers)

• How likely it is that the program could fail in that way

Wh h f h f il ld b• What the consequences of that failure could be

For testing
purposes, the most
important is:

For project
management

• A way the program
could fail

purposes,
• How likely
• What consequences

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 3

could fail • What consequences

Risk-based testing?
Risk-based test prioritization: Evaluate each area of a
product and allocate time/money according to perceived risk.

Risk-based test lobbying: Use information about risk toRisk-based test lobbying: Use information about risk to
justify requests for more time / staff.

Risk-based test design: A program is a collection of
opportunities for things to go wrong. For each way that you can
imagine the program failing, design tests to determine whether the
program actually will fail in that way. The most powerful tests are p g y y p
the ones that maximize a program’s opportunity to fail.

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 4

Risk-based prioritization:
Evaluate each area of a product and allocate p

time/money according to perceived risk.

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 5

Risk-based prioritization
Often called “risk-based testing” or “risk-based test management”

If one part of the program is “higher risk” than another, allocate more
time/money for testing of it.y g

So how do we estimate risk?

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 6

Silly mathemagics
For each area (e.g. feature):

• Estimate the probability it will fail, on a scale of 1 (very low) to 5
(very high)(y g)

• Estimate the severity of the failure if it will happen, on a scale of 1
(lowest) to 5 (highest)

E i i k d b bili d i• Estimate risk as rated-probability x rated-severity.

• Allocate more resource and earlier testing to bigger-numbered areas.

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 7

Silly mathemagics
Estimate risk as rated-probability x rated-severity?

1. It is mathematically meaningless to multiply orderings (1 to 5)
because the distance from 1 to 2 is incomparable with the distance p
from (for example) 2 to 3.

2. The probability that an area will fail is 100%. Everything has a bug
or two (or more) Eventually if you test/use long enough you willor two (or more). Eventually, if you test/use long enough, you will
find it.

3. The severity is richly multidimensional, for example:

– How many people are affected?

– What is the cost per failure?

How embarrassing is the failure?– How embarrassing is the failure?

– How long will it take to fix this bug if it is there? (If you don’t
find long-to-fix bugs early, they don’t get fixed)

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 8

Risk-based prioritization: The goal is…
Prioritization….
• What should you do first?

H h h ld b d ?• How much should you budget?

• When should you stop?

 that makes sense to other people…. that makes sense to other people

My experience:My experience:

• The high-risk and low-risk areas are relatively easy to identify and
justify

• The mid-level ones are harder, but the ranking of them often comes
most naturally from other factors (how long it would take to fix code
in this part of the product; who is available when to fix these bugs;

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner

p p g
how squeeky the local wheels are wrt this feature, etc.)

9

Classic, project-level risk analysis

Project-level risk analyses usually consider risk factors that can

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 10

j y y
make the project as a whole fail, and how to manage those risks.

Project-level risk analysis
Project risk management involves

• Identification of the different risks to the project (issues that might
cause the project to fail or to fall behind schedule or to cost too p j
much or to dissatisfy customers or other stakeholders)

• Analysis of the potential costs associated with each risk

D l f l d i d h lik lih d f h i k• Development of plans and actions to reduce the likelihood of the risk
or the magnitude of the harm

• Continuous assessment or monitoring of the risks (or the actions
taken to manage them)

Useful material available free at http://seir.sei.cmu.edu

http://www coyotevalley com (Brian Lawrence)http://www.coyotevalley.com (Brian Lawrence)

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 11

Project-level risk analysis
• Might not give us much guidance about how to test

• But it might give us a lot of hints about where to test

• If you can imagine a potential failure

• In many cases, that failure might be possible at many different places y g p y p
in the program

• Which should you try first?

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 12

Project risk heuristics: Where to look for errors
New things: less likely to have revealed its bugs yet.

New technology: same as new code, plus the risks of unanticipated
problems.p

Learning curve: people make more mistakes while learning.

Changed things: same as new things, but changes can also break old
dcode.

Poor control: without SCM, files can be overridden or lost.

Late change: rushed decisions, rushed or demoralized staff lead toLate change: rushed decisions, rushed or demoralized staff lead to
mistakes.

Rushed work: some tasks or projects are chronically underfunded
and all aspects of work quality sufferand all aspects of work quality suffer.

Fatigue: tired people make mistakes.

Distributed team: a far flung team communicates less

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner

Distributed team: a far flung team communicates less

13

Project risk heuristics: Where to look for errors
Other staff issues: alcoholic, mother died, two programmers who
won’t talk to each other (neither will their code)…

Surprise features: f t t f ll l d hSurprise features: features not carefully planned may have
unanticipated effects on other features.

Third-party code: external components may be much less well p y p y
understood than local code, and much harder to get fixed.

Unbudgeted: unbudgeted tasks may be done shoddily.

Ambiguous: ambiguous descriptions (in specs or other docs) lead
to incorrect or conflicting implementations.

Conflicting requirements: ambiguity often hides conflict resultConflicting requirements: ambiguity often hides conflict, result
is loss of value for some person.

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 14

Project risk heuristics: Where to look for errors
Mysterious silence h thi i t ti i t t i tMysterious silence: when something interesting or important is not
described or documented, it may have not been thought through, or the
designer may be hiding its problems.

Unknown requirements: requirements surface throughout
development. Failure to meet a legitimate requirement is a failure of
quality for that stakeholder.

Evolving requirements: people realize what they want as the
product develops. Adhering to a start-of-the-project requirements list
may meet the contract but yield a failed product. y y p

Buggy: anything known to have lots of problems has more.

Recent failure: anything with a recent history of problems.

Upstream dependency: may cause problems in the rest of the
system

D t d d i i bl i h f h

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 15

Downstream dependency: sensitive to problems in the rest of the
system.

Project risk heuristics: Where to look for errors
Distributed: anything spread out in time or space, that must work
as a unit.

Open-ended: any function or data that appears unlimitedOpen-ended: any function or data that appears unlimited.

Complex: what’s hard to understand is hard to get right.

Language-typical errors: such as wild pointers in CLanguage typical errors: such as wild pointers in C.

Little system testing: untested software will fail.

Little unit testing: programmers normally find and fix most ofLittle unit testing: programmers normally find and fix most of
their own bugs.

Previous reliance on narrow testing strategies: can yield
b kl f d b h ha many-version backlog of errors not exposed by those techniques.

Weak test tools: if tools don’t exist to help identify / isolate a
class of error (e.g. wild pointers), the error is more likely to survive

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 16

class of error (e.g. wild pointers), the error is more likely to survive
to testing and beyond.

Project risk heuristics: Where to look for errorsj
Unfixable: bugs that survived because, when they were first
reported, no one knew how to fix them in the time available.

Untestable: anything that requires slow, difficult or inefficient
testing is probably undertested.

Publicity: anywhere failure will lead to bad publicityPublicity: anywhere failure will lead to bad publicity.

Liability: anywhere that failure would justify a lawsuit.

Critical: anything whose failure could cause substantial damageCritical: anything whose failure could cause substantial damage.

Precise: anything that must meet its requirements exactly.

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 17

Project risk heuristics: Where to look for errorsj
Easy to misuse: anything that requires special care or training to
use properly.

Popular: anything that will be used a lot, or by a lot of people.

Strategic: anything that has special importance to your business.

VIP: anything used by particularly important people.

Visible: anywhere failure will be obvious and upset users.

Invisible: anywhere failure will be hidden and remain undetected
until a serious failure results.

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 18

Project risk heuristics: Where to look for errors
If you have access to the source code, and have programming skills, take
a look at work on prediction of failure-prone files and modules by:

• Emmet James Whitehead (UC Santa Cruz), for example

S. Kim, E. J. Whitehead, Jr., and Y. Zhang, "Classifying Software
Changes: Clean or Buggy?," IEEE Transactions on Software
Engineering, to appear, 2008, manuscript available at
http://www.cs.ucsc.edu/~ejw/papers/cc.pdf.p j p p p

This is very recent, and I think very promising, empirical research.

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 19

Risk-based lobbying:
Use information about risk to justify requests j y q

for more time / staff.

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 20

Risk-based lobbying
Quality is value to some person (Weinberg)

Different people have different valuations of different parts of the
product.p

If you want more people / time / money to test some part of the
product:

hi k b h ill ff if h f h d d ’• think about who will suffer most if that part of the product doesn’t
work well

• help them understand the kinds of tests you COULD run of their
favored area

• help them understand some of the reasons you have of being
mistrustful of this implementation of this areamistrustful of this implementation of this area

• scenarios (scenario tests) are often helpful for illustration

• Let the person who will be most impacted by the bug champion your
d f

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner

need for resources

21

Risk-based test-design:
A program is a collection of opportunities for things
to go wrong. For each way that you can imagine the

program failing, design tests to determine whether the p g g, g
program actually will fail in that way. The most

powerful tests are the ones that maximize a program’s
opportunity to failopportunity to fail

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 22

For risk-based test design and execution:

The essence of risk based testing is this:The essence of risk-based testing is this:

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 23

Just one little problem

“Imagine how the product
could fail”?

How do you do that?

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 24

Just one problem
“Imagine how the product could fail” ?

How do you do that?

We’ll consider three classes of heuristics:

• Recognize common project warning signs (and test things associated
with the risky aspects of the project)with the risky aspects of the project).

• Apply common techniques (quicktests or attacks) to take advantage
of common errors

• Apply failure mode and effects analysis to (many or all) elements of
the product and to the product’s key quality criteria.

We call these heuristics because they are fallible
but useful guides. You have to exercise your own
j d m nt b t hi h t h n

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 25

judgment about which to use when.

Risk-based testing

QuickTests:
SimpleSimple,

Risk-Derived,
Test Techniques

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 26

QuickTests?

A quicktest is a cheap test that has some value but requires little
preparation, knowledge, or time to perform.

• Participants at the 7th Los Altos Workshop on Software Testing• Participants at the 7th Los Altos Workshop on Software Testing
(Exploratory Testing, 1999) pulled together a collection of these.

• James Whittaker published another collection in How to Break
S fSoftware.

• Elisabeth Hendrickson teaches courses on bug hunting techniques and
tools, many of which are quicktests or tools that support them.

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 27

A Classic QuickTest: The Shoe Test
Find an input field, move the cursor to it, put your shoe on the
keyboard, and go to lunch.

Basically, you’re using the auto-repeat on the keyboard for a cheap y, y g p y p
stress test.

• Tests like this often overflow input buffers.

I B h’ f i i h fi d di l b d hIn Bach’s favorite variant, he finds a dialog box so constructed that
pressing a key leads to, say, another dialog box (perhaps an error
message) that also has a button connected to the same key that returns
t th fi t di l bto the first dialog box.

• This will expose some types of long-sequence errors
(stack overflows, memory leaks, etc.)

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 28

Another Classic Example of a QuickTest
Traditional boundary testing

• All you need is the variable, and its possible values.

• You need very little information about the meaning of the variable• You need very little information about the meaning of the variable
(why people assign values to it, what it interacts with).

• You test at boundaries because miscoding of boundaries is a common
error.

Note the foundation-level assumption of this test:

Assumption
This is a programming error so common that it’s p g g
worth building a test technique optimized to find
errors of that type.

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 29

Why do we care about quicktests?
P i t A Y i i h ld f ilPoint A: You imagine a way the program could fail.

Point B: You have to figure out how to design a test that could
generate that failure.

Getting from Point A to Point B is a creative process. It depends on
your ability to imagine a testing approach that could yield the test that
yields the failure.y

The more test techniques you know, and the better you understand
them, the easier this creative task becomes.

Thi i i ’ i i i• This is not some mysterious tester’s intuition

• “Luck favors the mind that is prepared.” (Louis Pasteur)

Quicktests give us straightforward, useful examples of tests that are
focused on easy application of an underlying theory of error. They are
just what we need to learn about to start stretching our imagination

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner

just what we need to learn about, to start stretching our imagination.

30

“Attacks” to expose common coding errors
Jorgensen & Whittaker pulled together a collection of common coding
errors, many of them involving insufficiently or incorrectly constrained
variables.

They created (or identified common) attacks to test for these.

An attack is a stereotyped class of tests, optimized around a
specific type of errorspecific type of error.

Think back to boundary testing:

• Boundary testing for numeric input fields is an example of an attack.
The error is mis-specification (or mis-typing) of the upper or lower
bound of the numeric input field.

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 31

“Attacks” to expose common coding errors
In his book, How to Break Software, Professor
Whittaker expanded the list and, for each
attack, discussed

• When to apply it

• What software errors make the attack
successfulsuccessful

• How to determine if the attack exposed a
failure

• How to conduct the attack, and

• An example of the attack.

We'll list How to Break Software's attacksWe ll list How to Break Software s attacks
here, but recommend the book's full discussion.

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 32

“Attacks” to expose common coding errors
User interface attacks: Exploring the input domain

• Attack 1: Apply inputs that force all the error messages to occur

• Attack 2: Apply inputs that force the software to establish default• Attack 2: Apply inputs that force the software to establish default
values

• Attack 3: Explore allowable character sets and data types

• Attack 4: Overflow input buffers

• Attack 5: Find inputs that may interact and test combinations of their
valuesvalues

• Attack 6: Repeat the same input or series of inputs numerous times

» From Whittaker, How to Break Software

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 33

Risk-based testing

Failure Modes

Failure Mode & Effects Analysis (FMEA)ff y ()

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 34

Failure mode: A way that the program could fail
Example: Portion of analysis for an installer product

• Wrong files installed

temporary files not cleaned up– temporary files not cleaned up

– old files not cleaned up after upgrade

– unneeded file installed

– needed file not installed

– correct file installed in the wrong place

• Files clobbered

– older file replaces newer file

user data file clobbered during upgrade– user data file clobbered during upgrade

• Other apps clobbered

– file shared with another product is modified

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner

p

– file belonging to another product is deleted

35

Failure mode & effects analysis
Widely used for safety analysis of goods.

Consider the product in terms of its components. For each component

• Imagine the ways it could fail For each potential failure (each failure• Imagine the ways it could fail. For each potential failure (each failure
mode), ask questions:

– What would that failure look like?

– How would you detect that failure?

– How expensive would it be to search for that failure?

Wh ld be im acted b that fail re?– Who would be impacted by that failure?

– How much variation would there be in the effect of the failure?

– How serious (on average) would that failure be?(g)

– How expensive would it be to fix the underlying cause?

• On the basis of the analysis, decide whether it is cost effective to
h f hi i l f il

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner

search for this potential failure

36

Failure mode & effects analysis (FMEA)
Several excellent web pages introduce FMEA and SFMEA (software
FMEA)

• http://www.fmeainfocentre.com/p

• http://www.fmeainfocentre.com/presentations/SFMEA-IIE.pdf

• http://www.fmeainfocentre.com/papers/mackel1.pdf

• http://www.quality-one.com/services/fmea.php

• http://www.visitask.com/fmea.asp

• htt ://healthcare isi si ma c m/librar /c ntent/c040317a as• http://healthcare.isixsigma.com/library/content/c040317a.asp

• http://www.qualitytrainingportal.com/resources/fmea/

• http://citeseer.ist.psu.edu/69117.htmlp p

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 37

Bug catalogs
Testing Computer Software included an appendix that listed almost 500
common bugs (actually, failure modes).

The list evolved across several products and companies. It was intended p p
to be a generic list, more of a starting point for failure mode planning
than a complete list.

To be included in the list:To be included in the list:

• A particular failure mode had to be possible in at least two
significantly different programs

• A particular failure mode had to be possible in applications running
under different operating systems (we occasionally relaxed this rule)

You can find the TCS 2nd edition list (appendix) on Hung Nguyen’s site:You can find the TCS 2 edition list (appendix) on Hung Nguyen s site:
http://www.logigear.com/resources/articles_lg/Common_Software_Erro
rs.pdf?fileid=2458

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 38

Bug catalogs
Testing Computer Software included an appendix that listed almost 500
common bugs (actually, failure modes).

Some people found this appendix very useful for training staff, generating p p pp y g , g g
test ideas and supporting auditing of test plans,

However, it was

i d idi i ll• organized idiosyncratically,

• its coverage was uneven, and

• some people inappropriately treated it as a comprehensive listsome people inappropriately treated it as a comprehensive list
(because they didn’t understand it, or were unable to do the
independent critical analysis needed to tailor this to their application)

Eventually I stopped recommending this list (even though I developedEventually, I stopped recommending this list (even though I developed
the first edition of it and had found it very useful for several years) in
favor of an early version of James Bach’s Heuristic test strategy model
(latest version at http://www satisfice com/tools/satisfice tsm 4p pdf)

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner

(latest version at http://www.satisfice.com/tools/satisfice-tsm-4p.pdf)

39

Building a failure mode catalog
Giri Vijayaraghavan and Ajay Jha followed similar approaches in
developing failure mode catalogs for their M.Sc. theses (available in the
lab publications set at www.testingeducation.org):

• Identify components

– They used the Heuristic Test Strategy Model as a starting point.

I i h ld f il (i hi)– Imagine ways the program could fail (in this component).

° They used magazines, web discussions, some corporations’ bug
databases, interviews with people who had tested their class of
products, and so on, to guide their imagination.

– Imagine failures involving interactions among components

• They did the same thing for quality attributes (see next section)• They did the same thing for quality attributes (see next section).

These catalogs are not orthogonal. They help generate test ideas, but
are not suited for classifying test ideas.

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 40

Building failure mode lists from product elements: Shopping cart example
Think in terms of the components of your product

• Structures: Everything that comprises the logical or physical product
– Database server

– Cache server

• Functions: Everything the product does
– Calculation

– Navigation

H
g

– Memory management

– Error handling

• Data: Everything the product processes

How
could y g p p

– Human error (retailer)

– Human error (customer)

• Operations: How the product will be used

they
fail?p p

– Upgrade

– Order processing

• Platforms: Everything on which the product depends

fail?

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 41

y g p p
» Adapted from Giri Vijayaraghavan's Master's thesis.

FMEA & quality attributes
In FMEA, we list a bunch of things (components of the product under
test) we could test, and then figure out how they might fail.

Quality attributes cut across the components:Q y p

• Usability

– Easy to learn

– Reasonable number of steps

– Accessible to someone with a disability

° A dit r° Auditory

° Visual

» Imagine evaluating every product element in terms of accessibility to someone g g y p y
with a visual impairment.

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 42

Using a failure mode list
Test idea generation

• Find a potential bug (failure mode) in the list

• Ask whether the software under test could have this bug• Ask whether the software under test could have this bug

• If it is theoretically possible that the program could have the bug, ask
how you could find the bug if it was there.

• Ask how plausible it is that this bug could be in the program and how
serious the failure would be if it was there.

• If appropriate, design a test or series of tests for bugs of this type.If appropriate, design a test or series of tests for bugs of this type.

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 43

Using a failure mode list
Test plan auditing

• Pick categories to sample from

• From each category find a few potential defects in the list• From each category, find a few potential defects in the list

• For each potential defect, ask whether the software under test could
have this defect

• If it is theoretically possible that the program could have the defect,
ask whether the test plan could find the bug if it was there.

Getting unstuckGetting unstuck

• Look for classes of problem outside of your usual box

Training new staff

• Expose them to what can go wrong, challenge them to design tests
that could trigger those failures

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 44

Risk-based testing: Some papers of interest
• Stale Amland, Risk Based Testing,

http://www.amland.no/WordDocuments/EuroSTAR99Paper.doc

• James Bach, Reframing Requirements AnalysisJ g q y

• James Bach, Risk and Requirements- Based Testing

• James Bach, James Bach on Risk-Based Testing

S l A l d & H S h f Ri k b d i (• Stale Amland & Hans Schaefer, Risk based testing, a response (at
http://www.satisfice.com)

• Stale Amland’s course notes on Risk-Based Agile Testing (December
2002) at
http://www.testingeducation.org/coursenotes/amland_stale/cm_200212_
exploratorytesting

• Carl Popper, Conjectures & Refutations

• James Whittaker, How to Break Software

• Giri Vijayaraghavan’s papers and thesis on bug taxonomies at

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner

Giri Vijayaraghavan s papers and thesis on bug taxonomies, at
http://www.testingeducation.org/articles

45

Risk-Based Design
• We often go from technique to test

– Find all variables, domain test each

Find all spec paragraphs make a relevant test for each– Find all spec paragraphs, make a relevant test for each

– Find all lines of code, make a set of tests that collectively includes
each

• It is much harder to go from a failure mode to a test

– The program will crash?

Th ill h ild i t ?– The program will have a wild pointer?

– The program will have a memory leak?

– The program will be hard to use?p g

– The program will corrupt its database?

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 46

About Cem Kaner
• Professor of Software Engineering, Florida Tech
• Research Fellow at Satisfice, Inc.

I’ve worked in all areas of product development (programmer, tester, p p (p g , ,
writer, teacher, user interface designer, software salesperson,
organization development consultant, as a manager of user
documentation, software testing, and software development, and as an

f i h l f f li)attorney focusing on the law of software quality.)
Senior author of three books:
• Lessons Learned in Software Testing (with James Bach & Bret g (J

Pettichord)
• Bad Software (with David Pels)
• Testing Computer Software (with Jack Falk & Hung Quoc Nguyen).Testing Computer Software (with Jack Falk & Hung Quoc Nguyen).

My doctoral research on psychophysics (perceptual measurement)
nurtured my interests in human factors (usable computer systems) and
measurement theory.

Risk-Based Testing @ QAI Copyright © 2008 Cem Kaner 47

y

