
Copyright (c) 1998 Cem Kaner. All Rights Reserved.

Test DocumentationTest Documentation

Thoughts From The

3rd LOS ALTOS WORKSHOP
ON SOFTWARE TESTING

(Los Altos, CA, February 1998)

Cem Kaner
J.D., Ph.D.

Copyright (c) 1994-1997 Cem Kaner. All Rights Reserved. 2

Test Documentation:Test Documentation:
Preliminary NotePreliminary Note

On February 7 and 8, the Third Los Altos Workshop on Software Testing discussed
test documentation (test planning strategies and materials). The agenda item was:

» How do we know what test cases we have? How do we know
which areas of the program are well covered and which are not?

» How do we develop this documentation EFFICIENTLY? As many
of you know, I despise thick test plans and I begrudge every
millisecond that I spend on test case documentation.
Unfortunately, some work is necessary. My question is, how little
can we get away with, while still preserving the value of our asset?

The following people attended LAWST 3: Chris Agruss, James Bach, KarlaX Fisher,
David Gelperin, Kenneth Groder, Elisabeth Hendrickson, Doug Hoffman, III, Bob
Johnson, Cem Kaner, Brian Lawrence, Thomas Lindemuth, Brian Marick, Thanga
Meenakshi, Noel Nyman, Jeffery E. Payne, Bret Pettichord, Johanna Rothman, Jane
Stepak, Jeremy White, and Rodney Wilson.

(Well, I should say that I think those people attended. I’m embarrassed to say that I got
on the plane and realized that I didn’t have a final attendance list with me. I’m pretty
sure that this was the full crowd.)

We came up with a lot of ideas. The material listed here is only a subset. I'm still
thinking about the range and implications of our discussion. This is my first public
talk on LAWST since the meeting, and my first real attempt to sort out some of the
good ideas in a way that will be useful to people outside of the LAWST group. I hope
you'll tolerate some disorganization--this is thinking in progress. And, your comments,
criticisms, and virtual tomatoes are most welcome.

NOTICE:
This talk does not necessarily reflect the views of each of the LAWST 3 attendees. Nor is it a comprehensive
layout of the material we discussed at LAWST 3.

Copyright (c) 1994-1997 Cem Kaner. All Rights Reserved. 3

Test Documentation:Test Documentation:
Fine PrintFine Print

NOTICE

This talk does not necessarily reflect the views of each of the LAWST 3 attendees. Nor is it a comprehensive layout of the
material we discussed at LAWST 3.

This communication should not be interpreted as legal advice or a legal opinion. The transmission of this communication
does not create an attorney-client relationship between me and you. Do not act or rely upon law-related information in this
communication without seeking the advice of an attorney. Finally, nothing in this message should be interpreted as a "digital
signature" or "electronic signature" that can create binding commercial transactions.

Any advice given in this communication should be taken with a grain of salt. Don't believe everything that you read. Your
mileage may vary. Each dealer negotiates its own prices. Please keep your hands in the car at all times. Do not tap on glass.
Do not eat anything that has been on the floor for more than 10 seconds. Power tools are not an effective cure for
headaches. If this were an actual emergency, this broadcast would be followed by official information and instructions. Keep
your hands to yourself. Do not point. Please do not feed the animals. High Voltage, keep out! Contents under pressure, may
explode. Not to be taken internally. Wait at least 1/2 hour after eating before using this material.

This material does not reflect the thoughts or opinions of either myself, my company, my friends, or my cat. Don't quote me
on that; don't quote me on anything. All rights reserved. Copyright © 1998--Permanent or transitory reproductions of this
material are not allowed. If you even THINK about this page without my written permission, you owe me $1 for unauthorized
copying.

By reading this page, you agree that this material is provided to you “as is” without warranty of any kind, express or implied.
All responsibility for its use rests with you. In addition, you agree that your remedy for defects in this material is limited to the
price you paid for it, less $25 per page for handling expense. You expressly agree that this limitation of liability is applicable
even if I have been notified of the existence of defects in this material. In no event will I be liable to you even for a known
defect that causes you predictable harm.

These pages are subject to change without notice. Bugs may be slightly enlarged to show detail. Any resemblance to actual
persons, living or dead, is unintentional and purely coincidental. Hand wash only, tumble dry on low heat.

Do not bend, fold, mutilate, or spindle. No substitutions allowed. For a limited time only. This material is void where
prohibited, taxed, or otherwise restricted. Equal opportunity employer. No shoes, no shirt, no bugs, no paycheque. Quantities
are limited while supplies last; or until the ship date (which will come first). If defects are discovered, do not attempt to fix
them yourself. Return to an authorized service cente where they will be suitably deferred. Caveat emptor, caveat testor,
caveat litigator. Read at your own risk. Parental advisory - explicit lyrics; text may contain material some readers may find
objectionable, parental guidance is advised. Keep away from sunlight, pets, and small children. Limit one-per-family please.

No money down; no purchase necessary; you need not be present to win. Some assembly required. Batteries are not
included. Action figures sold separately. No preservatives added; safety goggles may be required during use. Sealed for
your protection, do not use if the safety seal is broken. Call before you dig.

For external use only. If a rash, redness, irritation, or swelling develops, quit reading the code. Use only with proper
ventilation. Avoid extreme temperatures and store in a cool dry place. Keep away from open flames and avoid inhaling
fumes. Avoid contact with mucous membranes. Do not puncture, incinerate, or store above 120 degrees Fahrenheit. Do not
place near flammable or magnetic source.

Smoking these pages may be hazardous to your health and may be a felony under your state’s laws. The best safeguard,
second only to abstinence, is the use of a good laugh. Text used in these materials is made from 100% recycled electrons
and magnetic particles; no animals were used to test these materials. No salt, MSG, artificial color or flavor added. If
ingested, do not induce vomiting. If symptoms persist, consult your test manager.

Slippery when wet. Must be 18 to enter. Possible penalties for early withdrawal. Offer valid only at participating E-mail sites,
slightly higher west of the Rockies. Allow four to six weeks for delivery. Disclaimer does not cover hurricane, lightning,
tornado, tsunami, volcanic eruption, earthquake, flood, and other Acts of God, misuse, neglect, unauthorized repair, damage
from improper installation, broken antenna or marred cabinet, incorrect line voltage, software errors, missing or altered serial
numbers, sonic boom vibrations, electromagnetic radiation from nuclear blasts, customer adjustments that are not covered in
the joke list, and incidents owing to airplane crash, ship sinking, motor vehicle accidents, leaky roof, broken glass, falling
rocks, mud slides, forest fire, unwanted children, flying projectiles, or dropping the item. Other restrictions may apply.

Copyright (c) 1994-1997 Cem Kaner. All Rights Reserved. 4

Test Documentation:Test Documentation:
OverviewOverview

1. Terminology

2. Some Common Mistakes

3. Requirements for Test
Documentation

4. A Few Good Techniques

5. Notes on Development of
a Documentation
Strategy

6. Notes on Group
Processes for Developing
and Reviewing Test
Documentation

Copyright (c) 1994-1997 Cem Kaner. All Rights Reserved. 5

Test Documentation:Test Documentation:
TerminologyTerminology

David Gelperin urged us to rethink our
use of the word “test plan” because it is
overused, and too often used to mean
different things. Here are the words I’ll
probably use going forward:

» Test Case
» Test Suite
» Test Objective
» Test Strategy
» Test Design
» Testing Project Plan (aka test plan)
» Test Documentation (aka test plan)

Copyright (c) 1994-1997 Cem Kaner. All Rights Reserved. 6

Test Documentation:Test Documentation:
Some Common MistakesSome Common Mistakes

Let’s not spend much time on these. I’d
rather focus on what works. But here are
blunders that you’ve probably encountered:

» Death by Detail
• Myth of perfectly reproducible test cases
• Brainless paperwork: reduced productivity and creativity
• Overemphasis on simple tests rather than harsh ones

» No Detail
• How do you tell that the program has failed a test case?
• Comfort without justification

» Ancestor Worship
• There is value in inspecting ancestral test cases, in measuring their

code coverage, and in using them as a mine for insights.
• Beware of false positives and false negatives.
• Beware of undocumented test cases.
• Reverse engineering, rewriting, and the 10% rule.

» No Source Control
» Mis-set Management Expectations

• Managers may think that the documented tests are 100% of the tests.
• Managers may think that all test cases will/should be documented in

detail.
• Managers may think that every test case that appears on a test

document should be run.

Copyright (c) 1994-1997 Cem Kaner. All Rights Reserved. 7

Test Plan Requirements:Test Plan Requirements:
Contrasting ObjectivesContrasting Objectives

• Is the test documentation set a
product or a tool?

• Is it a process model, a product
model, or a defect finder?

• Is your software quality driven by
legal considerations or by market
forces?

• How much traceability do you need?
What docs are you tracing back to
and who controls them?

Copyright (c) 1994-1997 Cem Kaner. All Rights Reserved. 8

Test Plan Requirements:Test Plan Requirements:
Contrasting Objectives Contrasting Objectives --22

• Is your testing approach primarily
oriented toward conformance to specs
or other written criteria or toward
proving nonconformance with
customer expectations?

• Does your preferred testing style rely
on already-defined tests (regression)
or exploration?

• Should test docs focus on what to test
(objectives) or on how to test for it
(procedures)?

Copyright (c) 1994-1997 Cem Kaner. All Rights Reserved. 9

Test Plan Requirements:Test Plan Requirements:
Contrasting Objectives Contrasting Objectives --33

• Should detailed control of the project
by the test plan should come early,
late, or never?

• To what extent should test docs
support tracking and reporting of
project status and testing progress?

• How well should docs support
delegation of work to new testers?

• What are your assumptions about the
skills and knowledge of new testers?

• Who are the primary readers of these
test documents and how important
are they?

Copyright (c) 1994-1997 Cem Kaner. All Rights Reserved. 10

Test Plan Requirements:Test Plan Requirements:
Contrasting Objectives Contrasting Objectives --44

• A test suite should provide prevention,
detection, and prediction. Which is
the most important for this project?

• How maintainable are the test docs
(and their test cases)? How well do
they ensure that test changes will
follow code changes?

• Will the test docs help us identify (and
revise/restructure in the face of) a
permanent shift in the risk profile of
the program?

• Are (should) docs (be) automatically
created as a byproduct of the test
automation code?

Copyright (c) 1994-1997 Cem Kaner. All Rights Reserved. 11

Test Documentation:Test Documentation:
A Few Good TechniquesA Few Good Techniques

• Tripos-based description of test
objectives (Bach)

• Boundary and equivalence analysis
(Myers)

• Reusable test matrix (Nguyen,
Kaner)

• Automated reusable test matrix
(Hendrickson)

• Objectives list (Gelperin)

• Multi-variable test combination
chart (Gelperin)

• Data relationship chart (Kaner)

Copyright (c) 1994-1997 Cem Kaner. All Rights Reserved. 12

Test Documentation:Test Documentation:
TriposTripos

Project
Factors

Test
Techniques

Product
Elements

One Page card

less than 40 minutes
of think time (except
project)

Outline of element

Quality
Criteria

One page for
project;

One page for
element;

One page per
test

Perceived
Quality

(Content reviewed; elements not linked; need to
write down and ask questions; one page insisted
upon unless compelling argument for violation)

TRIPOS Model [Bach, STLabs]

Copyright (c) 1994-1997 Cem Kaner. All Rights Reserved. 13

Test Docs: Boundary & Test Docs: Boundary &
Equivalence AnalysisEquivalence Analysis

Two tests belong to the same equivalence
class if you expect the same result (pass / fail)
of each. Testing multiple members of the
same equivalence class is, by definition,
redundant testing.

Boundaries mark the point or zone of
transition from one equivalence class to
another. The program is more likely to fail at a
boundary, so these are the best members of
(simple, numeric) equivalence classes to use.

Note how the boundary case has two ways to fail. It
can fail because the program’s treatment of the
equivalence class is broken OR because the
programmer’s treatment of inequalities is broken.

More generally, you look to subdivide a space
of possible tests into relatively few classes
and to run a few cases of each. You’d like to
pick the most powerful tests from each class.

Copyright (c) 1994-1997 Cem Kaner. All Rights Reserved. 14

Boundary Analysis TableBoundary Analysis Table

The simplest way to build a boundary analysis
over time is to put the information that you gather
into a table.

The table should eventually contain all
variables. This means, all input variables, all
output variables, and any intermediate variables
that you can somehow observe.

In constructing this table, you might well just
LIST all (or many) of the variables first, filling in
information about them as you obtain it.

V a r i a b l e E q u i v a l e n c e
C l a s s e s

B o u n d a r i e s
a n d S p e c i a l
C a s e s

N o t e s

F i r s t
n u m b e r

- 9 9 t o 9 9
> 9 9

< - 9 9
n o n - n u m b e r
e x p r e s s io n s

9 9 , 1 0 0
- 9 9 , - 1 0 0

/
;
0

n u l l e n t r y

m a x b o u n d s
m i n b o u n d s

A S C I I b o u n d s ,
n e x t s e c t i o n

0 a lw a y s
i n t e r e s t i n g

S e c o n d
n u m b e r

s a m e a s f i r s t s a m e s a m e

S u m - 1 9 8 t o 1 9 8 A r e t h e r e o t h e r
s o u r c e s o f d a t a
f o r t h i s v a r ia b le ?
W a y s t o f e e d i t
b a d d a t a ?

Copyright (c) 1994-1997 Cem Kaner. All Rights Reserved. 15

Boundary Table as a Test Boundary Table as a Test
Plan ComponentPlan Component

• Makes the reasoning obvious.
• Makes the relationships between test

cases fairly obvious.
• Expected results are pretty obvious.
• Several tests on one page.
• Can delegate it and have tester check off

what was done. Provides some limited
opportunity for tracking.

• Not much room for status.
--

Question, now that we have the table,
do we have to do all the tests? What
about doing them all each time (each
cycle of testing)?

Copyright (c) 1994-1997 Cem Kaner. All Rights Reserved. 16

PartitioningPartitioning

In theory, the key to partitioning is
dividing the space into mutually
exclusive subsets. Each subset is an
equivalence class. This is very nice in
theory, but let’s look at printers.
LaserJet II compatible printers
• Big class
• HP II original was weak in graphic-

complexity related error handling but
strong in paper handling. Depending on
the kind of risk we’re testing against, we
might or might not choose this printer as
the exemplar of the class.

Copyright (c) 1994-1997 Cem Kaner. All Rights Reserved. 17

PartitioningPartitioning

Device compatibility testing illustrates a
multidimensional space with imperfect
divisions between classes and with several
different failure risks. The key to success is
to remember that partitioning is merely a
sampling strategy. The goal is to work from
a rational basis in order to select a few
valuable representatives from a much larger
population of potential tests.
If you can think of different ways that the
program can fail in its interaction with a
device (such as a printer), then FOR EACH
TYPE OF ERROR, you look for the specific
device (model, version of printer) that is
most likely to confound the program.
From an equivalence class of “LaserJet II
compatibles” you get several different,
uniquely powerful, class representatives.
A strong sampling strategy rests on our
knowledge of the world, not just of the spec.

Copyright (c) 1994-1997 Cem Kaner. All Rights Reserved. 18

Examples from a Class Exercise: Examples from a Class Exercise:
Equivalence Class and Boundary Equivalence Class and Boundary

BrainstormBrainstorm
There are many types of variables, including
input variables, output variables, internal
variables, hardware and system software
configurations, and equipment states. Any of
these can be subject to equivalence class
analysis. Here are some common results from
the class brainstorms:

• ranges of numbers
• character codes
• how many times something is done

» (e.g. shareware limits on the
number of uses of the software)

» (e.g. how many times you can
do it before you run out of
memory)

• how many records in a database, how
many names in a mailing list, how many
variables in a spreadsheet, how many
bookmarks, how many abbreviations

• size of the sum of variables, or the size of
some other computed value (think binary
and think digits)

• size of a number that you enter (number of
digits) or size of a character string

• size of a concatenated string
• size of a path specification
• size of a file name
• size (in characters) of a document
• size of a file (note special values such as

exactly 64K, exactly 512 bytes, etc.)
• size of a document on a page, in terms of

the memory requirements for the page.
This might just be in terms of resolution x
page size, but it may be more complex if
we have compression algorithms

• size of the document on the page
(compared to page margins) (across
different page margins, page sizes)

• equivalent output events (such as printing
documents)

• amount of available memory (> 128 meg,
> 640K, etc.)

• visual resolution, size of screen, number
of colors

• operating system version
• variations within a group of “compatible”

printers, sound cards, modems, etc.
• equivalent event times (when something

happens)
• timing: how long between event A and

event B (and in which order--races)
• length of time after a timeout (from JUST

before to way after) -- what events are
important?

• speed of data entry (time between
keystrokes, menus, etc.)

• speed of input -- handling of concurrent
events

• number of devices connected / active
• system resources consumed / available

(also, handles, stack space, etc.)
• date (year 2000-related boundaries) and

time (23:59; end of week, end of month)
• transitions between algorithms

(optimizations) (different ways to compute
a function)

• most recent event, first event
• input or output intensity (voltage)
• speed / extent of voltage transition (e.g.

from very soft to very loud sound)

Refer to Testing Computer Software, pages 7-11, 126-133, 399-401

Copyright (c) 1994-1997 Cem Kaner. All Rights Reserved. 19

Using Test Matrices to Using Test Matrices to
Simplify PartitioningSimplify Partitioning

After testing a simple numeric input field a few
times, you’ve learned the drill. The boundary
chart is reasonably easy to fill out for this, but
it wastes your time.
Use a test matrix to show/track a series of test
cases that are essentially the same.

• For example, for most input fields, you’ll do a
series of the same tests, checking how the field
handles boundaries, unexpected characters,
function keys, etc.

• As another example, for most files, you’ll run
essentially the same tests on file handling.

The matrix is a concise way of showing the
repeating tests.

• Put the objects that you’re testing on the rows.
• Show the tests on the columns.
• Check off the tests that you actually completed in

the cells.

Copyright (c) 1994-1997 Cem Kaner. All Rights Reserved. 20

Reusable Test MatricesReusable Test Matrices
Test Matrix for a Numeric Input Field

Additional Instructions:

N
ot

hi
ng

V
al

id
 v

al
ue

A
t L

B
 o

f v
al

ue

A
t U

B
 o

f v
al

ue

A
t L

B
 o

f v
al

ue
 -

 1

A
t U

B
 o

f v
al

ue
 +

 1

O
ut

si
de

 o
f L

B
 o

f v
al

ue

O
ut

si
de

 o
f U

B
 o

f v
al

ue

0 N
eg

at
iv

e

A
t L

B
 n

um
be

r
of

 d
ig

its
 o

r
ch

ar
s

A
t U

B
 n

um
be

r
of

 d
ig

its
 o

r
ch

ar
s

E
m

pt
y

fie
ld

 (
cl

ea
r

th
e

de
fa

ul
t v

al
ue

)

O
ut

si
de

 o
f U

B
 n

um
be

r
of

 d
ig

its
 o

r
ch

ar
s

N
on

-d
ig

its

W
ro

ng
 d

at
a

ty
pe

 (
e.

g.
 d

ec
im

al
 in

to
 in

te
ge

r)

E
xp

re
ss

io
ns

S
pa

ce

N
on

-p
rin

tin
g

ch
ar

 (
e.

g.
, C

tr
l+

ch
ar

)

D
O

S
 fi

le
na

m
e

re
se

rv
ed

 c
ha

rs
 (

e.
g.

, "
\ *

 .
:"

)

U
pp

er
 A

S
C

II
(1

28
-2

54
)

U
pp

er
 c

as
e

ch
ar

s

Lo
w

er
 c

as
e

ch
ar

s

M
od

ifi
er

s
(e

.g
.,

C
tr

l,
A

lt,
 S

hi
ft-

C
tr

l,
et

c.
)

F
un

ct
io

n
ke

y
(F

2,
 F

3,
 F

4,
 e

tc
.)

Copyright (c) 1994-1997 Cem Kaner. All Rights Reserved. 21

MatricesMatrices

• You can often re-use a matrix like this
across products and projects.

• You can create matrices like this for a
wide range of problems. Whenever you
can specify multiple tests to be done on
one class of object, and you expect to
test several such objects, you can put
the multiple tests on the matrix.

• Mark a cell blue if you ran the test and
the program passed it. Mark the cell
read if the program failed.

• Write the bug number of the bug
report for this bug.

• Write (in the cell) the automation
number or identifier if the test case has
been automated.

Copyright (c) 1994-1997 Cem Kaner. All Rights Reserved. 22

MatricesMatrices

Problems?
• What if your thinking gets out of date?

(What if this program poses new issues,
not covered by the standard tests?)

• Do you need to execute every test every
time? (or ever?)

• What if the automation ID number
changes? -- We still have a maintenance
problem but it is not as obscure.

• This still supports exploration.

Copyright (c) 1994-1997 Cem Kaner. All Rights Reserved. 23

Automated Reusable Automated Reusable
Test MatricesTest Matrices

Walk back through the Numeric Input
matrix, but from the point of view of
automating it. Depending on your
automation tool, the following script
should be reasonably easy:
• Identify the variable
• Input the range
• Input the main out-of-range error message
• Have the script walk the program against

all of the tests for this variable, checking
for valid results or out-of-range errors.

In theory, you should be able to set
this up as a real-time input tool. (Look
at a variable, specify it, test it.)

Copyright (c) 1994-1997 Cem Kaner. All Rights Reserved. 24

Objectives listObjectives list

Test Objectives:
• Inputs

» Field-level
• (list each variable)

» Group-level
• (list each interesting combination of

variables)

• Outputs
» Field-level

• (list each variable)
» Group-level

• (list each interesting combination of
variables)

• (Based on examples in Gelperin’s
Systematic Software Testing course.)

Copyright (c) 1994-1997 Cem Kaner. All Rights Reserved. 25

Objectives listObjectives list

Requirements-based Objectives
• Capability-based (resulting from functional

design)
» Functions or methods including major

calculations (and their trigger conditions)
» Constraints or limits (non-functional

requirements)
» Interfaces to other products
» Input (validation) and Output conditions at up to

4 levels of aggregation
• field / icon / action / response message
• record / message / row / window / print line
• file / table / screen / report
• database

» Product states and transition paths
» Behavior rules

• truth value combinations

• (Based on examples in Gelperin’s Systematic
Software Testing course.)

Copyright (c) 1994-1997 Cem Kaner. All Rights Reserved. 26

Objectives listObjectives list

Design-based Objectives
(resulting from architectural design)

• Processor and invocation paths
• Messages and communication paths
• Internal data conditions
• Design states
• Limits and exceptions

Code-based Objectives
• Control-based

» Branch-free blocks (i.e. statements)
» (Top) branches
» Loop bodies

• 0,1, and even
» Single conditions

• LT, EQ, and GT

• Data-based
» Set-use pairs
» Revealing values for calculations

• (Based on examples in Gelperin’s Systematic Software
Testing course.)

Copyright (c) 1994-1997 Cem Kaner. All Rights Reserved. 27

Combination ChartCombination Chart

The idea here is that there are a few variables
that you will test together, in order to look at a
joint effect. “Testing Issues” might include some
underlying variable that you want to test, or
some output that you want to manipulate, or
some other event that is determined by the
combination of variables, not by any one of them
alone.
Each row is a test case.
The variables’ entries are typically actual values.
The “testing issues” entries are the values or
events you are trying to manipulate or observe.

Cases Variable
1

Variable
2

Variable
3

Testing
Issue 1

Testing
Issue 2

Testing
Issue 3

Copyright (c) 1994-1997 Cem Kaner. All Rights Reserved. 28

Complex Data RelationshipsComplex Data Relationships

Copyright (c) 1994-1997 Cem Kaner. All Rights Reserved. 29

A Tabular Format for A Tabular Format for
Data RelationshipsData Relationships

Field Entry
Source

Display Print Related
Variable

Relationship

Start Date End Date Constraint to a
range

End Date Start Date Constraint to a
range

Once you identify two variables that are related,
test them together using boundary values of each
or pairs of values that will trigger some other
boundary.
--

This is not the most powerful process for looking at
relationships. An approach like Cause-Effect Graphing
is more powerful, if you have a perfect specification.
I started using this chart as an exploratory tool for
simplifying my look at relationships in
overwhelmingly complex programs. (There doesn’t
have to be a lot of complexity to be “overwhelming.”)

Copyright (c) 1994-1997 Cem Kaner. All Rights Reserved. 30

A Tabular Format for A Tabular Format for
Data RelationshipsData Relationships

THE TABLE’S FIELDS
Field: Create a row for each field (Consultant, End

Date, and Start Date are examples of fields.)
Entry Source: What dialog boxes can you use to enter

data into this field? Can you import data into this
field? Can data be calculated into this field? List every
way to fill the field -- every screen, etc.

Display: List every dialog box, error message window,
etc., that can display the value of this field. When you
re-enter a value into this field, will the new entry show
up in each screen that displays the field? (Not always -
- sometimes the program makes local copies of
variables and fails to update them.)

Print: List all the reports that print the value of this field
(and any other functions that print the value).

Related to:: List every variable that is related to this
variable. (What if you enter a legal value into this
variable, then change the value of a constraining
variable to something that is incompatible with this
variable’s value?)

Relationship: Identify the relationship to the related
variable.

Copyright (c) 1994-1997 Cem Kaner. All Rights Reserved. 31

A Tabular Format for A Tabular Format for
Data RelationshipsData Relationships

Many relationships among data:
• Independence

» Varying one has no effect on the value or
permissible values of the other.

• Causal determination
» By changing the value of one, we determine

the value of the other.
» For example, in MS Word, the extent of

shading of an area depends on the object
selected. The shading differs depending on
Table vs. Paragraph.

• Constrained to a range
» For example, the width of a line has to be

less than the width of the page.
» In a date field, the permissible dates are

determined by the month (and the year, if
February).

• Selection of rules
» For example, hyphenation rules depend on

the language you choose.

Copyright (c) 1994-1997 Cem Kaner. All Rights Reserved. 32

A Tabular Format for A Tabular Format for
Data RelationshipsData Relationships

• Logical selection from a list
» processes the value you entered and

then figures out what value to use for
the next variable. Example: timeouts in
phone dialing:

• 0 on complete call 555-1212 but 95551212?
• 10 on ambiguous completion, 955-5121
• 30 seconds incomplete 555-121

• Logical selection of a list:
» For example, in printer setup, choose:

• OfficeJet, get Graphics Quality, Paper
Type, and Color Options

• LaserJet 4, get Economode, Resolution,
and Half-toning.

• Look at Marick for discussion of
catalogs of tests for data relationships.

Copyright (c) 1994-1997 Cem Kaner. All Rights Reserved. 33

Data Relationship TableData Relationship Table

Looking at the Word options, you see
the real value of the data relationships
table. Many of these options have a lot
of repercussions.
You might analyze all of the details of
all of the relationships later, but for
now, it is challenging just to find out
what all the relationships ARE.
The table guides exploration and will
surface a lot of bugs.

PROBLEM
Works great for this release. Next
release, what is your support for more
exploration?

Copyright (c) 1994-1997 Cem Kaner. All Rights Reserved. 34

About Cem KanerAbout Cem Kaner

I focus on the satisfaction and safety of customers and workers. This cuts across several academic
and technical disciplines. To develop competence in the field, I’ve worked in several related areas:
Law (J.D., 1993). Currently in a small solo practice that provides direct legal and retained expert
services. Public service includes prosecution (3 months full-time volunteer, Santa Clara County,
Deputy DA); grievance officer and contract advisor for the National Writers Union; consumer
complaint investigator / mediator (Santa Clara County Dept. of Consumer Affairs); and Board of
Directors, Northern California Hemophilia Foundation. I am deeply involved in the drafting of
Article 2B of the Uniform Commercial Code (a new law that will govern all contracts for software)
and laws governing digital signatures.
Quality (Certified by ASQC in Quality Engineering, 1992). I served as an Examiner for the
California Quality Awards in 1994 and 1995.
Experimental Psychology (Ph.D, 1984: perceptual measurement, cognition, physiological
foundations). Continuing education in human factors / ergonomics.
Mathematics & Philosophy (B.A., Arts & Sciences, 1974).
Technical Communication (courses at UC Santa Cruz Extension). I published Testing Computer
Software in 1988 and the 2nd edition (with Hung Nguyen and Jack Falk) in 1993. It received the
Award of Excellence in the Society for Technical Communication’s Northern California Technical
Publications Competition. I’ve managed three tech pubs groups, and my staff have won several STC
awards. I’ve published about 50 papers and am currently working on three new books: Testing
Computer Software (3rd Edition); Bad Software: Consumer Protection for Computer Software; and
Good Enough Testing for Good Enough Software.
Organization Development (courses from Community at Work, plus experience as an Associate,
then Senior Associate at Psylomar -- Organization Development)
Computing. I first studied FORTRAN in 1967 (many other languages later). In 1970-73, I learned
valuable lessons the hard way about human factors, reliability, and real world requirements via a
failing service-bureau-based computerization of my family’s retail businesses. I began doing my own
work with computers in 1976, while a Psychology graduate student. We used them as real time lab
control systems, simulators, and data analyzers. Interested in the human side of the machines, my
colleagues and I explored ways to improve software usability and overall system reliability. In 1983,
I moved to Silicon Valley. Since then I’ve worked in the Valley as a human factors analyst (user
interface designer), programmer, test manager, technical publications manager, software
development manager, middle manager (director), and (my current role) independent consultant.

