
Copyright (c) Cem Kaner, Automated Testing. 1

Software Test Automation:Software Test Automation:
A RealA Real--World ProblemWorld Problem

Cem Kaner, Ph.D., J.D.

Copyright (c) Cem Kaner, Automated Testing. 2

This TalkThis Talk

The most widely used class
of automated testing tools
leads senior software testers
into software development
blunders that a first year
programming student
shouldn’t make.
We can learn (or relearn)
interesting basic lessons
about software development
from the problems that
accompany these tools.

Copyright (c) Cem Kaner, Automated Testing. 3

Testing is an Important TaskTesting is an Important Task

“Failed ERP Gamble Haunts Hershey”
Computerworld, November 1, 1999.

“A $112 million ERP project has blown up in
the face of Hershey Foods.”
“Last week, when Hershey announced a
19% drop in third-quarter profits, CEO
Kenneth Wolfe said the system fixes are
taking longer than expected and are
requiring more extensive changes.”
“They’ve missed Halloween, they’re
probably going to miss Christmas, and they
might even start missing Easter.”
“The company recently . . . developed a list
of changes . . . Wolfe said,

‘But they need to be tested
before we can put them in,

and we can’t get that done.’ ”

Copyright (c) Cem Kaner, Automated Testing. 4

Testing is a Huge Task Testing is a Huge Task

• Complete testing is impossible
• Testing eats ½ or more of the

development budget of several
projects.

• On new releases of some mature
mass-market products, the software
publisher is spending 4 weeks on
testing and fixing for every week of
new enhancements (new features, UI
redesign, etc.)

• Companies that develop application
software typically have specialized
software testing groups. These
testers typically do manual testing
(relatively little automation), so their
work is labor-intense and slow.

• Automation is desirable, but carries
serious risks of its own.

Copyright (c) Cem Kaner, Automated Testing. 5

The GUI Regression Test The GUI Regression Test
ParadigmParadigm

This is the most common style of
automated testing.
� Create a test case.
� Run it and inspect the output
� If program fails, report bug and try later.
� If program passes, save the resulting

outputs.
� In the future:

» Run the program and compare the
output to the saved results.

» Report an exception when the current
output and the saved output don’t
match.

Most commonly, we run these tests on
the finished program, testing underlying
functions by issuing commands through
the program’s GUI. Therefore, these are
typically called GUI-level test tools.

Copyright (c) Cem Kaner, Automated Testing. 6

Common Problems: Bad Design Common Problems: Bad Design
& Programming Practices& Programming Practices

Worst case (very common)

� The Capture / Replay tool:
» Tests can be created quickly and

easily by non-programmers.

Results:
� Embedded constants
� No modularity
� No source control
� No documentation
� No requirements analysis
� No wonder we fail.

(We are writing applications. Windows
NT 4 had 6 million lines of code, and 12
million lines of test code.)

Copyright (c) Cem Kaner, Automated Testing. 7

Common ProblemsCommon Problems

Various problems such as:
� Underestimated cost
� Your most technically skilled staff are

tied up in automation

But especially,

Low power of
regression testing

And,

Low attention to
maintainability.

Copyright (c) Cem Kaner, Automated Testing. 8

19 Common Mistakes19 Common Mistakes

� Don’t underestimate the
cost of automation.

� Don’t underestimate the
need for staff training.

� Don’t expect to be more
productive over the short
term.

� Don’t spend so much
time and effort on
regression testing.

� Don’t use instability of
the code as an excuse.

� Don’t put off finding bugs
in order to write test
cases.

� Don’t write simplistic test
cases.

� Don’t shoot for “100%
automation.”

� Don’t use capture/replay
to create tests.

� Don’t write isolated
scripts in your spare
time.

� Don’t create test scripts
that won’t be easy to
maintain over the long
term.

� Don’t make the code
machine-specific.

� Don’t fail to treat this as
a genuine programming
project.

� Don’t “forget” to
document your work.

� Don’t deal unthinkingly
with ancestral code.

� Don’t give the high-skill
work to outsiders.

� Don’t insist that all of
your testers be
programmers.

� Don’t put up with bugs
and crappy support for
the test tool.

� Don’t forget to clear up
the fantasies that have
been spoonfed to your
management.

Copyright (c) Cem Kaner, Automated Testing. 9

Requirements AnalysisRequirements Analysis

What Are the Requirements For a
Successful Test Automation?”

� At two meetings of the Los Altos
Workshops on Software Testing, we
pooled our requirements-oriented
questions resulting in the following (next
slide) list of 27 interesting questions.

� Requirements: circumstances or
preferences that will drive the design.

� HERE’S ONE KEY EXAMPLE:
» Will the user interface of the

application be stable or not?

Copyright (c) Cem Kaner, Automated Testing. 10

27 Requirements Questions27 Requirements Questions

� Will the user interface of
the application be stable
or not?

� To what extent are oracles
available?

� To what extent are you
looking for delayed-fuse
bugs (memory leaks, wild
pointers, etc.)?

� Does your management
expect to recover its
investment in automation
within a certain period of
time? How long is that
period and how easily can
you influence these
expectations?

� Are you testing your own
company’s code or the
code of a client? Does the
client want (is the client
willing to pay for) reusable
test cases or will it be
satisfied with bug reports
and status reports?

� Do you expect this
product to sell through
multiple versions?

� Do you anticipate that the
product will be stable when
released, or do you expect to
have to test Release N.01,
N.02, N.03 and other bug fix
releases on an urgent basis
after shipment?

� Do you anticipate that the
product will be translated to
other languages? Will it be
recompiled or relinked after
translation (do you need to do
a full test of the program after
translation)? How many
translations and
localizations?

� Does your company make
several products that can be
tested in similar ways? Is
there an opportunity for
amortizing the cost of tool
development across several
projects?

� How varied are the
configurations (combinations
of operating system version,
hardware, and drivers) in your
market? (To what extent do
you need to test compatibility
with them?)

Copyright (c) Cem Kaner, Automated Testing. 11

27 Requirements Questions27 Requirements Questions

� What level of source
control has been applied
to the code under test? To
what extent can old,
defective code
accidentally come back
into a build?.How
frequently do you receive
new builds of the
software?

� Are new builds well tested
(integration tests) by the
developers before they
get to the tester?

� To what extent have the
programming staff used
custom controls?

� How likely is it that the
next version of your
testing tool will have
changes in its command
syntax and command set?

� What are the
logging/reporting
capabilities of your tool?
Do you have to build these
in?

� To what extent does the tool
make it easy for you to
recover from errors (in the
product under test), prepare
the product for further
testing, and re-synchronize
the product and the test (get
them operating at the same
state in the same program).

� (In general, what kind of
functionality will you have to
add to the tool to make it
usable?)

� Is the quality of your product
driven primarily by regulatory
or liability considerations or
by market forces
(competition)?

� Is your company subject to a
legal requirement that test
cases be demonstrable?

� Will you have to be able to
trace test cases back to
customer requirements and
to show that each
requirement has associated
test cases?

Copyright (c) Cem Kaner, Automated Testing. 12

27 Requirements Questions27 Requirements Questions

� Is your company subject
to audits or inspections
by organizations that
prefer to see extensive
regression testing?

� If you are doing custom
programming, is there a
contract that specifies
the acceptance tests?
Can you automate these
and use them as
regression tests?

� What are the skills of
your current staff?

� Do you have to make it
possible for non-
programmers to create
automated test cases?

� To what extent are
cooperative programmers
available within the
programming team to
provide automation
support such as event
logs, more unique or
informative error
messages, and hooks for
making function calls
below the UI level?

� What kinds of tests are
really hard in your
application? How would
automation make these
tests easier to conduct?

Copyright (c) Cem Kaner, Automated Testing. 13

TableTable--Driven, Interpreted Driven, Interpreted
ArchitectureArchitecture

To improve maintainability in the
face of a constantly changing user
interface, split the design of the test
cases from the automation of the
features.
� Describe the test cases as data

that can be fed to the program

� Describe the methods to set the
value of each feature.

Here’s an example (next slide):

Copyright (c) Cem Kaner, Automated Testing. 14

The Calendar ExampleThe Calendar Example

Copyright (c) Cem Kaner, Automated Testing. 15

The Calendar ExampleThe Calendar Example

Copyright (c) Cem Kaner, Automated Testing. 16

The Calendar ExampleThe Calendar Example

Copyright (c) Cem Kaner, Automated Testing. 17

Think About:Think About:

� Automated testing is software
development.

� We decided to do table-driven
programming because we realized
that maintainability was a key
requirement for us. Requirements
drive design.

� Our choice of architecture had a huge
effect on everything else we did. This
particular choice resulted in a
relatively small program and a big
data table. To add new tests, we
added a new line to the table. To
update our model of the program, we
changed the test code itself. There
were lots of other possible
architectures. Each one would have
carried its own strengths and
weaknesses. Architecture drives
implementation and maintenance.

Copyright (c) Cem Kaner, Automated Testing. 18

Think About:Think About:

� The larger the project, the more
important it is to think through
the requirements and design
early.

Copyright (c) Cem Kaner, Automated Testing. 19

Los Altos Workshop Los Altos Workshop
on Software Testing (LAWST)on Software Testing (LAWST)

Much of this material was developed at the
first 3 meetings of LAWST. These are non-
profit (no charge, invitation-only) meetings of
experienced consultants and practitioners, in
which we share good practices and lessons
learned on tightly defined issues. LAWST 1-3
participants were:
Chris Agruss,Tom Arnold, James Bach,
Richard Bender, Jim Brooks, Karla Fisher,
Chip Groder, Elizabeth Hendrickson, Doug
Hoffman, Keith Hooper, III, Bob Johnson, Cem
Kaner (host / founder of LAWST), Brian
Lawrence (facilitator & co-host of LAWST),
Tom Lindemuth, Brian Marick, Thanga
Meenakshi, Noel Nyman, Jeffery E. Payne,
Bret Pettichord, Drew Pritsker, Johanna
Rothman, Jane Stepak, Melora Svoboda,
Jeremy White, and Rodney Wilson.

