
Copyright (c) 1999 Cem Kaner. All Rights Reserved. 1

The Law of Software Quality

Cem Kaner
J.D., Ph.D., ASQ-C.Q.E

ASM/SM

San Jose, CA

March, 2000

kaner@kaner.com

www.kaner.com (technical)

www.badsoftware.com (legal)

408-244-7000

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 2

About Cem Kaner

I’m in the business of improving software customer satisfaction. I approach customer satisfaction from
several angles. I’ve been a programmer, tester, writer, teacher, user interface designer, software
salesperson, and a manager of user documentation, software testing, and software development, an
organization development consultant and an attorney focusing on the law of software quality. These
have provided many insights into relationships between computes, software, developers, and
customers.

I do the following types of work:

⌧ Training: I offer this course (Black Box Software Testing), and shorter courses on

» Recruiting Software Testers (1 day)

» Concise Test Planning (1 day at conferences, 1.5 days at customer sites)

» Test Automation (2 days — I co-teach this with Doug Hoffman)

⌧ Consulting to software companies: Primarily, I help software companies do better testing. I
sometimes help companies improve their user documentation or help them with broader software
development management issues.

⌧ Legal services: I represent authors, programmers, and testers (I help consultants negotiate deals or
negotiate with dissatisfied clients). Occasionally, I represent dissatisfied customers. I do a lot of work
on legislation governing software contracting or electronic commerce.

Education:

⌧ J.D. (law degree, 1993). Elected to the American Law Institute, 1999.

⌧ Ph.D. (experimental psychology, 1984) (trained in measurement theory and in human factors, the
field concerned with making hardware and software easier and safer for humans to use).

⌧ B.A. (primarily mathematics and philosophy, 1974).

⌧ Certified in Quality Engineering (American Society for Quality, 1992). Senior Member, American
Society for Quality. Examiner(1994, 1995) for the California Quality Awards.

⌧ I am also the founder and co- host of the Los Altos Workshops on Software Testing and the Software
Test Managers’ Roundtable.

Author:

⌧ Testing Computer Software (1988; 2nd edition with Hung Nguyen and Jack Falk,1993). This
received the Award of Excellence in the Society for Technical Communication’s Northern California
Technical Publications Competition.

⌧ Bad Software: What To Do When Software Fails (with David Pels)

⌧ I’ve also managed three tech pubs groups, and my staff have won several STC awards.

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 3

Copyright Notice and
Disclaimer

These course notes are copyrighted. You may not make
additional copies of these notes without the express written
permission of Cem Kaner. You can request permission from me
by writing

Cem Kaner
P.O. Box 580
Santa Clara, CA 95052-0580.

These notes include some legal information, but you are not my
legal client and I am not providing specific legal advice in the
notes or in the course. Even if you ask me a question about a
specific situation, you must understand that you cannot possibly
give me enough information in a classroom setting for me to
respond with a competent legal opinion. I may use your question
as a teaching tool, and answer it in a way that I believe would
“normally” be true but my answer could be completely
inappropriate for your particular situation. I cannot accept any
responsibility for any actions that you might take in response to
my comments in this course. If you need legal advice, please
consult your own attorney.

I chose the court cases for this course for their instructional
value. I’m not trying to teach you a full survey of computer liability law
in a day. I’m not trying to make sure that you have the most up-to-date
cases or that you are exposed to all of the key legal theories.

Instead, my goal is to highlight certain issues that I think will
be of interest to software developers, that might change how you
develop, document, and test products.

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 4

A Look Ahead:
Suggestions / Lessons

⌧ Be reasonable. Do reasonable things.

⌧ Test your documentation, collaterals, marketing
materials, tech support answer books, and sales training
books

⌧ You can’t deliver a perfect product, so plan for
problems

⌧ You can be sued for things that you didn’t anticipate or
intend, so identify and manage your risks

⌧ Plan to do what you will do. Don’t write that your plan
is to follow an overly constrained life cycle or that you
will develop an over-ambitious test plan. If you’re not
going to do it, don’t create an erroneous expectation in
your documentation.

⌧ Scale your documentation, development formality, and
testing according to the risks your product presents to
your customers

⌧ Don’t expect to be able to bury test docs or design
controversies if you get sued. If something is bad, make
clear that it’s bad.

⌧ Investigate all customer complaints

⌧ Don’t rely on disclaimers

⌧ Get sued in contract, not in tort

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 5

Contents

• Lawsuits and quality

• Discussion points: some interesting lawsuits

• Ground rules of lawsuits

• The key legal theories

• A quick scan of damages

• Intentional torts

• Contracts: Failure to perform

• Contracts: Breach of warranty

• Contracts: Damage control

• Misrepresentation

• Consumer protection

• Negligence

• Strict products liability

• Malpractice

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 6

Introductions

Please introduce yourself.
What’s your grounding in:

⌧software development?
⌧marketing?
⌧customer care?
⌧management?
⌧law?

What kinds of software do you develop,
sell or support? Price range?
Is your software custom-developed or
mass market?
What two things do you most want to
walk away with from this course?

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 7

Law of Software Quality

Section 1.

Lawsuits and Quality

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 8

Customer Dissatisfaction

The Canadian government recently
completed a study of the claims made on
the packaging of consumer software:

Incorrect (and “potentially false or
misleading”) claims were made by
65% of all the software titles tested.

Study by Industry Canada’s Competition Bureau. For the full
study, go to http://strategis.ic.gc.ca/FBP and search for
“software”.

Computer-related complaints made Better
Business Bureau’s top 10 for 1995, even
higher than used car dealers. We did worse in
1996.
(The BBB’s data for 1997 merged computing with consumer
electronics, making comparisons with the 1995 and 1996 data
difficult. The combined totals yield higher ranks (more
complaints), of course.)

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 9

Sophisticated Customers
Have Trouble Too

Albert Stark lays out problems that software support staff
encounter when they try to buy and install problem
management systems. Support staff provide an interesting
example, because they’re usually pretty talented at making
things work.

Stark points out that:
⌧ “The system will not do everything promised.”
⌧ “System functionality is typically overstated.”
⌧ “You’ll need to purchase additional modules to get the

functionality you need.”
⌧ “Features you need are scheduled for a future release.”
⌧ “The out-of-box reality is less than expected.”
⌧ “You’ll need to purchase additional hardware.”
⌧ “The software will be more complex than it appeared

during the sales cycle.”
⌧ “System customization will not go smoothly” even

though “Vendors can make customization look easy.”

In a parallel session at the same conference, speaker
asked an audience of publishers’ technical support staff
how many of them would trade in their problem
management system if they could. Over half the attendees
raised their hands.

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 10

Dissatisfaction Costs
Publishers Money

⌧1996--200 million calls to tech support.

⌧The industry spends about $25 per call.

⌧Software companies spend about $3 per
minute providing support for PC-based
products, and $5 per minute (or more) for
UNIX and mainframe products.

⌧In companies that have pushed many
complainers to the internet, handling the
issues raised by live calls cost as much as
$150 to $400 per incident (averages
reported at a 1999 Support Services
Conference).

⌧Customer complaints have skyrocketed.
Over 7 years, ratio of support to total
employees in computer-related companies
has gone from 1 in 12 to 1 in 6.

For references and additional data, see Kaner & Pels,
Bad Software: What To Do When Software Fails, Wiley,
1998.

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 11

Customers Have Legitimate
Problems

⌧In those 200 million calls for support, software
customers spent over 3 billion minutes on hold.

⌧This is tip of the iceberg because most American
customers don’t complain.

⌧Cross-industry study: Complaining software
customers left on hold for longer than any other
industry studied, even airlines and gov’t offices.

⌧At peak times, 85% of calls into tech support get
busy signals.

⌧58% of support staff get less than 1 week of
training before independently handling phone
calls.

⌧Complaints involving software / hardware from
more than one vendor take 3 to 18 times as long to
resolve.

⌧Business’ cost of ownership of a PC is often
estimated at $8000 to $11,000 per year.

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 12

We Don’t Recognize
 Our Costs

⌧At 1997 ASP Customer Support
Conference, 90% of attendees said
they believe they are delivering a
reasonable level of customer service &
support.

How can their perceptions differ so
much from their customers?

⌧1994 study by Help Desk Institute,
82% of responding support
organizations said that they didn’t
know their cost-per-call (what they
spend per complaint).

⌧Few companies have problem
resolution systems that report support
cost for a given bug in the field.

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 13

Many of us Don’t Look
at Long-Term Costs

⌧Customer dissatisfaction with quality
significantly reduces a company’s sales, but
several (in my experience, most) companies
ignore the dissatisfaction-associated revenue
risks because they don’t know how to estimate
their magnitude.

The degree to which people underestimate long-term effects is
illustrated by the following example.

⌧Microsoft spent $500,000,000 bringing its customer support from
blecch to world class. But customer perceptions still rank MS near
average as a support provider. Therefore, there might not be an
obvious immediate payoff in sales volume. Result--a leading
magazine said,

“Despite lots of wishful thinking to the contrary, spending money to
upgrade a company’s service reputation remains a lousy
investment.”

But it was in the same period that MS took over leadership in the
office applications market, typically in competition with publishers
that were intent on cost-reducing their technical support. I don’t think
that MS would have had a chance of stealing its competitors’
customers if they had paid more attention to preserving their
customers’ loyalty.

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 14

We Aren’t Collecting Data.

Capers Jones, Patterns of Software Systems Failure
& Success:

The number one root cause of cancellations, schedule
slippages, and cost overruns is the chronic failure of
the software industry to collect accurate historical
data from ongoing and completed projects. This
failure means that the vast majority of major software
projects are begun without anyone having a solid
notion of how much time will be required.
Software is perhaps the only technical industry where
neither clients, managers, nor technical staff have any
accurate quantitative data available to them from
similar projects when beginning major construction
activities. . . .
A result that is initially surprising but quite common
across the industry is to discover that the software
management community within a company knows so
little about the technology of software planning and
estimating that they do not even know of the kinds of
tools that are commercially available.

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 15

Some Customers Sue

There have been several recent lawsuits
involving bad software and / or bad support.

Many software products are sold with
disclaimers that purport to deny all possible
liability for defective products. Sometimes
these are cited by customer support staff to
complaining customers. Sometimes they are
cited in project team meetings to reassure
testers or customer service staff that shipping
the product with an awful bug will result in a
manageable state of affairs.

Every court in America that has ruled on the
shrink-wrapped warranty disclaimer (in
software or in hard goods) has said it is
ineffective. If your software is seriously
flawed, you release it at your company’s non-
trivial risk.

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 16

Lawsuits and Quality

Deadly Diseases

In his classic book, “Out of the Crisis,”
W.E. Deming named seven “Deadly
Diseases” that afflict American
businesses. Number 7 was “Excessive
costs of liability, swelled by lawyers that
work on contingency fees.” (p. 98)

⌧Are people who sue
unreasonable?
⌧Do lawsuits force companies to

overspend on quality or safety?
⌧How do we decide that a

company overspends on quality
or safety?

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 17

Lawsuits and Quality

Debunking Myths

As long as we think of lawsuits as demonic
threats to the public, we’ll be too busy
listening to our prejudices to understand the
laws governing quality.

So, let’s do a little debunking

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 18

Lawsuits and Quality

Litigation Crisis?

1994 Annual Report of the
Judicial Council of California

(This was heavily cited in some political
campaigns as proof of a litigation crisis)

Superior Court Civil Filings:
1983-84 1992-93 increase
561,916 684,070 122,154

(21.7%)

(1983-84 is the first of the 10 years in this
study. 1992-93 is the last of the 10
years.)

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 19

Lawsuits & Quality

Litigation Crisis?

Superior Court Civil Filings:

Personal injury, death, property damage:

Other civil petitions (Child Support):

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 20

Lawsuits & Quality

McDonalds and Spilled Coffee

(Courtesy of the Consumers Attorneys of California)

There is a lot of hype about the McDonald's scalding coffee case. No one is in
favor of frivolous cases or outlandish results;however, it is important to understand
some points that were not reported in most of the stories about the case. McDonald's
coffee was not only hot, it was scalding capable of almost instantaneous destruction of
skin, flesh and muscle. Here is the whole story.

Stella Liebeck of Albuquerque, New Mexico, was in the passenger seat of her
grandson's car when she was severely burned by McDonald's coffee in February 1992.
Liebeck, 79 at the time, ordered coffee that was served in a styrofoam cup at the
drivethrough window of a local McDonald's.

After receiving the order, the grandson pulled his car forward and stopped
momentarily so that Liebeck could add cream and sugar to her coffee. (Critics of civil
justice, who have pounced on this case, often charge that Liebeck was driving the car
or that the vehicle was in motion when she spilled the coffee; neither is true.) Liebeck
placed the cup between her knees and attempted to remove the plastic lid from the cup.
As she removed the lid, the entire contents of the cup spilled into her lap.

The sweatpants Liebeck was wearing absorbed the coffee and held it next to her
skin. A vascular surgeon determined that Liebeck suffered full thickness burns (or third
degree burns) over 6 percent of her body, including her inner thighs, perineum,
buttocks, and genital and groin areas. She was hospitalized for eight days, during
which time she underwent skin grafting. Liebeck, who also underwent debridement
treatments, sought to settle her claim for $20,000, but McDonald's refused.

During discovery, McDonald's produced documents showing more than 700
claims by people burned by its coffee between 1982 and 1992. Some claims involved
third degree burns substantially similar to Liebecks. This history documented
McDonald's knowledge about the extent and nature of this hazard.

McDonald's also said during discovery that, based on a consultants advice, it
held its coffee at between 180 and 190 degrees fahrenheit to maintain optimum taste.
He admitted that he had not evaluated the safety ramifications at this temperature.
Other establishments sell coffee at substantially lower temperatures, and coffee served
at home is generally 135 to 140 degrees.

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 21

Lawsuits & Quality

McDonalds and Spilled Coffee

Further, McDonald's quality assurance manager testified that the company
actively enforces a requirement that coffee be held in the pot at 185 degrees, plus or
minus five degrees. He also testified that a burn hazard exists with any food substance
served at 140 degrees or above, and that McDonald's coffee, at the temperature at
which it was poured into styrofoam cups, was not fit for consumption because it would
burn the mouth and throat. The quality assurance manager admitted that burns would
occur, but testified that McDonald's had no intention of reducing the "holding
temperature" of its coffee.

Plaintiff's expert, a scholar in thermodynamics applied to human skin burns,
testified that liquids, at 180 degrees, will cause a full thickness burn to human skin in
two to seven seconds. Other testimony showed that as the temperature decreases
toward 155 degrees, the extent of the burn relative to that temperature decreases
exponentially. Thus, if Liebeck's spill had involved coffee at 155 degrees, the liquid
would have cooled and given her time to avoid a serious burn.

McDonald's asserted that customers buy coffee on their way to work or home,
intending to consume it there. However, the company's own research showed that
customers intend to consume the coffee immediately while driving.

McDonald's also argued that consumers know coffee is hot and that its customers
want it that way. The company admitted its customers were unaware that they could
suffer third degree burns from the coffee and that a statement on the side of the cup
was not a "warning" but a "reminder" since the location of the writing would not warn
customers of the hazard.

The jury awarded Liebeck $200,000 in compensatory damages. This amount was
reduced to $160,000 because the jury found Liebeck 20 percent at fault in the spill. The
jury also awarded Liebeck $2.7 million in punitive damages, which equals about two
days of McDonald's coffee sales.

Postverdict investigation found that the temperature of coffee at the local
Albuquerque McDonald's had dropped to 158 degrees fahrenheit.

The trial court subsequently reduced the punitive award to $480,000 or three
times compensatory damages even though the judge called McDonald's conduct
reckless, callous and willful. Subsequent to remittitur, the parties entered a postverdict
settlement.

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 22

Lawsuits and Quality

Litigation Over Bad Quality

The essence of quality-related litigation is a
customer seeking to transfer losses caused by
a defective product back to the company that
made the defect or sold it.

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 23

Lawsuits and Quality

The Economics of Quality:
Quality/Cost Analysis

The Cost of Quality associated with a
product is the total amount that the
company spends to achieve and cope
with the quality of that product. It includes
investments in improving quality and
expenses arising from inadequate quality.

One of the key goals of quality
engineering is to minimize the total cost
of quality associated with a product or
project.

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 24

Lawsuits and Quality

Quality-Related Costs

Prevention Appraisal

Cost of preventing
software errors,
documentation errors, and
any other sources of
customer dissatisfaction

All costs of all types of
inspection (testing).

Internal failure External failure

ALL costs of coping with
errors discovered during
development.

All costs of coping with
errors discovered, typicall
by your customers, after
the product is released.

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 25

Lawsuits and Quality

Examples of
Quality-Related Costs

Prevention Appraisal
〈 Staff training
〈 Requirements analysis
〈 Early prototyping
〈 Fault-tolerant design
〈 Defensive programming
〈 Usability analysis
〈 Clear specification
〈 Accurate internal

documentation
〈 Pre-purchase evaluation of the

reliability of development tools

〈 Design review
〈 Code inspection
〈 Glass box testing
〈 Black box testing
〈 Training testers
〈 Beta testing
〈 Test automation
〈 Usability testing
〈 Pre-release out-of-box testing

by customer service staff

Internal Failure External Failure
〈 Bug fixes
〈 Regression testing
〈 Wasted in-house user time
〈 Wasted tester time
〈 Wasted writer time
〈 Wasted marketer time
〈 Wasted advertisements
〈 Direct cost of late shipment
〈 Opportunity cost of late

shipment

〈 Technical support calls
〈 Answer books (for Support)
〈 Investigating complaints
〈 Refunds and recalls
〈 Interim bug fix releases
〈 Shipping updated product
〈 Supporting multiple versions

in the field
〈 PR to soften bad reviews
〈 Lost sales
〈 Lost customer goodwill
〈 Reseller discounts to keep

them selling the product
〈 Warranty, liability costs

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 26

Quality Cost Analysis:
Risks of this Approach

Quality Cost analysis provides several benefits:

⌧ new opportunities to find / create common
ground with other groups in the company

⌧ analysis tool for budgeting and planning
quality-related activities

⌧ excellent communication tool for senior
management

But there are some risks, too, because we might
unwittingly open ourselves up to devastating
lawsuits:

⌧ Don’t think you’ve solved customer
dissatisfaction problems by driving down
support costs.

⌧ Don’t bet that you can safely rely on
disclaimers.

⌧ Don’t consider only your own external failure
costs. Know the costs to your customer.

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 27

Lawsuits and Quality

The External Failure Cost
of the Pinto

Benefits and Costs Relating to Fuel
Leakage Associated with the Static

Rollover Test Portion of FMVSS 208
Benefits -- Savings
180 burn deaths $200,000 each

180 serious burn injuries $67,000 each

2100 burned vehicles $700 each

Total Benefit $49.5 million

Costs
11 million cars $11 each

1.5 million trucks $11 each

Total Costs $137 million

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 28

Lawsuits and Quality

Customers’ External Failure
Costs are Important

Seller: external costs Customer: failure costs
These are the types of costs
absorbed by the seller that
releases a defective product.

These are the types of costs
absorbed by the customer who
buys a defective product.

〈 Technical support calls
〈 Preparing answer books
〈 Investigating complaints
〈 Refunds and recalls
〈 Interim bug fix releases
〈 Shipping updated product
〈 Supporting multiple

versions in the field
〈 PR to soften harsh reviews
〈 Lost sales
〈 Lost customer goodwill
〈 Reseller discounts to keep

them selling the product
〈 Warranty, liability costs
〈 Gov’t investigations

〈 Wasted time
〈 Lost data
〈 Lost business
〈 Embarrassment
〈 Frustrated employees quit
〈 Demos or presentations

to potential customers fail
because of the software

〈 Failure during tasks that
can only be done once

〈 Cost of replacing product
〈 Reconfiguring the system
〈 Cost of recovery software
〈 Cost of tech support
〈 Injury / death

One way to make an argument based on
customer costs is to evaluate costs to an in-

house group of users.

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 29

Influencing Others
Based on Costs

It’s probably impossible to fix every bug.
Sometimes the development team will choose to
not fix a bug based on their assessment of its
risks for them, without thinking of the costs to
other stakeholders in the company.

⌧Probable tech support cost.
⌧Risk to the customer.
⌧Risk to the customer’s data or equipment.
⌧Visibility in an area of interest to reviewers.
⌧Extent to which the bug detracts from the use

of the program.
⌧How often will a customer see it?
⌧How many customers will see it?
⌧Does it block any testing tasks?
⌧Degree to which it will block OEM deals or

other sales.
To argue against a deferral, ask yourself which
stakeholder(s) will pay the cost of keeping this
bug. Flag the bug to them.

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 30

Lawsuits and Quality

Litigation & the use of
Quality / Cost Analysis

Benefit: Quality Cost Analysis gives a
systematic framework for managing all
quality-related aspects of the product.

Risk: too easy to ignore customers’ costs.
If your external failure costs are
substantially less than your customers’
you may make an unreasonable fix-vs.-
ship decision.

Litigation: Reasonable customers have
reason to sue if your product’s failures
cost them more than their cost and
aggravation from litigation. This isn’t a
lottery. It’s an effort to transfer some of
the losses caused by your defective
product back to you.

Copyright (c) 1997-1999 Cem Kaner. All Rights Reserved. 31

Cem Kaner, Ph.D., J.D. P.O. Box 12
Attorney at Law Santa Clara, CA 95052
kaner@kaner.com 408-244-7000

Quality Cost Analysis: Benefits and Risks

Copyright © Cem Kaner. All rights reserved.
Published in Software QA, , 3, #1, 1996, p. 23.

 “Because the main language of [corporate management] was money, there
emerged the concept of studying quality-related costs as a means of
communication between the quality staff departments and the company
managers.”1

Joseph Juran, one of the world’s leading quality theorists, has been advocating the analysis of
quality-related costs since 1951, when he published the first edition of his Quality Control
Handbook. Feigenbaum made it one of the core ideas underlying the Total Quality Management
movement.2 It is a tremendously powerful tool for product quality, including software quality.

What is Quality Cost Analysis?

Quality costs are the costs associated with preventing, finding, and correcting defective
work. These costs are huge, running at 20% - 40% of sales.3 Many of these costs can be
significantly reduced or completely avoided. One of the key functions of a Quality Engineer is the
reduction of the total cost of quality associated with a product.

Here are six useful definitions, as applied to software products. Figure 1 gives examples
of the types of cost. Most of Figure 1’s examples are (hopefully) self-explanatory, but I’ll provide
some additional notes on a few of the costs:4

〈 Prevention Costs: Costs of activities that are specifically designed to prevent poor
quality. Examples of “poor quality” include coding errors, design errors, mistakes in
the user manuals, as well as badly documented or unmaintainably complex code.

 Note that most of the prevention costs don’t fit within the Testing Group’s budget. This

money is spent by the programming, design, and marketing staffs.

¤ Appraisal Costs: Costs of activities designed to find quality problems, such as code

inspections and any type of testing.

1 Gryna, F. M. (1988) “Quality Costs” in Juran, J.M. & Gryna, F. M. (1988, 4th Ed.), Juran’s Quality Control Handbook,
McGraw-Hill, page 4.2.
2 Feigenbaum, A.V. (1991, 3rd Ed. Revised), Total Quality Control, McGraw-Hill, Chapter 7.
3 Gryna, F. M. “Quality Costs” in Juran, J.M. & Gryna, F. M. (1988, 4th Ed.), Juran’s Quality Control Handbook,
McGraw-Hill, page 4.2. I’m not aware of reliable data on quality costs in software.
4 These are my translations of the ideas for a software development audience. More general, and more complete,
definitions are available in Campanella, J. (Ed.) (1990), Principles of Quality Costs, ASQC Quality Press, as well as in
Juran’s and Feigenbaum’s works.

Copyright (c) 1997-1999 Cem Kaner. All Rights Reserved. 32

 Design reviews are part prevention and part appraisal. To the degree that you’re
looking for errors in the proposed design itself when you do the review, you’re doing
an appraisal. To the degree that you are looking for ways to strengthen the design,
you are doing prevention.

〈 Failure Costs: Costs that result from poor quality, such as the cost of fixing bugs an

the cost of dealing with customer complaints.

〈 Internal Failure Costs: Failure costs that arise before your company supplies its

product to the customer. Along with costs of finding and fixing bugs are many
internal failure costs borne by groups outside of Product Development. If a bug
blocks someone in your company from doing her job, the costs of the wasted time,
the missed milestones, and the overtime to get back onto schedule are all internal
failure costs.

 For example, if your company sells thousands of copies of the same program, you w

probably print several thousand copies of a multi-color box that contains and
describes the program. You (your company) will often be able to get a much better
deal by booking press time in advance. However, if you don’t get the artwork to the
printer on time, you might have to pay for some or all of that wasted press time
anyway, and then you may have to pay additional printing fees and rush charges to
get the printing done on the new schedule. This can be an added expense of many
thousands of dollars.

 Some programming groups treat user interface errors as low priority, leaving them

until the end to fix. This can be a mistake. Marketing staff need pictures of the
product’s screen long before the program is finished, in order to get the artwork for
the box into the printer on time. User interface bugs – the ones that will be fixed lat
– can make it hard for these staff members to take (or mock up) accurate screen
shots. Delays caused by these minor design flaws, or by bugs that block a packaging
staff member from creating or printing special reports, can cause the company to
miss its printer deadline.

 Including costs like lost opportunity and cost of delays in numerical estimates of the

total cost of quality can be controversial. Campanella (1990)1 doesn’t include these in
a detailed listing of examples. Gryna (1988)2 recommends against including costs like
these in the published totals because fallout from the controversy over them can kil
the entire quality cost accounting effort. I include them here because I sometimes
find them very useful, even if it might not make sense to include them in a balance
sheet.

〈 External Failure Costs: Failure costs that arise after your company supplies the

product to the customer, such as customer service costs, or the cost of patching a
released product and distributing the patch.

External failure costs are huge. It is much cheaper to fix problems before shipping the
defective product to customers.

1 Principles of Quality Costs, ASQC Quality Press, Appendix B, “Detailed Description of Quality Cost Elements.”
2 “Quality Costs” in Juran, J.M. & Gryna, F. M. (1988, 4th Ed.), Juran’s Quality Control Handbook, McGraw-Hill, pages
4.9 - 4.12.

Copyright (c) 1997-1999 Cem Kaner. All Rights Reserved. 33

 Some of these costs must be treated with care. For example, the cost of pub
relations efforts to soften the publicity effects of bugs is probably not a huge
percentage of your company’s PR budget. You can’t charge the entire PR
budget as a quality-related cost. But any money that the PR group has to
spend to specifically cope with potentially bad publicity due to bugs is a
failure cost.

 I’ve omitted from Figure 1 several additional costs that I don’t know how to

estimate, and that I suspect are too often too controversial to use. Of these,
my two strongest themes are cost of high turnover (people quit over quality-
related frustration – this definitely includes sales staff, not just development
and support) and cost of lost pride (many people will work less hard, with less
care, if they believe that the final product will be low quality no matter what
they do.)

¤ Total Cost of Quality: The sum of costs: Prevention + Appraisal + Internal

Failure + External Failure.

Copyright (c) 1997-1999 Cem Kaner. All Rights Reserved. 34

Figure 1. Examples of Quality Costs Associated with Software Products.

Prevention Appraisal

〈 Staff training
〈 Requirements analysis
〈 Early prototyping
〈 Fault-tolerant design
〈 Defensive programming
〈 Usability analysis
〈 Clear specification
〈 Accurate internal documentation
〈 Evaluation of the reliability of development

tools (before buying them) or of other potential
components of the product

〈 Design review
〈 Code inspection
〈 Glass box testing
〈 Black box testing
〈 Training testers
〈 Beta testing
〈 Test automation
〈 Usability testing
〈 Pre-release out-of-box testing by customer

service staff

Internal Failure External Failure

〈 Bug fixes
〈 Regression testing
〈 Wasted in-house user time
〈 Wasted tester time
〈 Wasted writer time
〈 Wasted marketer time
〈 Wasted advertisements1

〈 Direct cost of late shipment2

〈 Opportunity cost of late shipment

〈 Technical support calls3

〈 Preparation of support answer books
〈 Investigation of customer complaints
〈 Refunds and recalls
〈 Coding / testing of interim bug fix releases
〈 Shipping of updated product
〈 Added expense of supporting multiple versions

of the product in the field
〈 PR work to soften drafts of harsh reviews
〈 Lost sales
〈 Lost customer goodwill
〈 Discounts to resellers to encourage them to

keep selling the product
〈 Warranty costs
〈 Liability costs
〈 Government investigations4

〈 Penalties5

〈 All other costs imposed by law

1 The product is scheduled for release on July 1, so your company arranges (far in advance) for an advertising campaign starting July 10. The product h
too many bugs to ship, and is delayed until December. All that advertising money was wasted.
2 If the product had to be shipped late because of bugs that had to be fixed, the direct cost of late shipment includes the lost sales, whereas the
opportunity cost of the late shipment includes the costs of delaying other projects while everyone finished this one.
3 Note, by the way, that you can reduce external failure costs without improving product quality. To reduce post-sale support costs without increasing
customer satisfaction, charge people for support. Switch from a toll-free support line to a toll line, cut your support staff size and you can leave callers o
hold for a long time at their expense. This discourages them from calling back. Because these cost reductions don’t increase customer satisfaction, the
seller’s cost of quality is going down, but the customer’s is not.
4 This is the cost of cooperating with a government investigation. Even if your company isn’t charged or penalized, you spend money on lawyers, etc.
5 Some penalties are written into the contract between the software developer and the purchaser, and the developer pays them if the product is late or h
specified problems. Other penalties are imposed by law. For example, the developer/publisher of a computer program that prepares United States taxe
liable for penalties to the Internal Revenue Service for errors in tax returns that are caused by bugs or design errors in the program. The publishers are
treated like other tax preparers (accountants, tax lawyers, etc.). See Revenue Ruling 85-189 in Cumulative Bulletin, 1985-2, page 341.

Copyright (c) 1997-1999 Cem Kaner. All Rights Reserved. 35

What Makes this Approach Powerful?

Over the long term, a project (or corporate) cost accounting system that tracks
quality-related costs can be a fundamentally important management tool. This is the path
that Juran and Feigenbaum will lead you down, and they and their followers have frequently
and eloquently explained the path, the system, and the goal.

I generally work with young, consumer-oriented software companies who don’t see
TQM programs as their top priority, and therefore my approach is more tactical. There is
significant benefit in using the language and insights of quality cost analysis, on a
project/product by project/product basis, even in a company that has no interest in Total
Quality Management or other formal quality management models.1

Here’s an example. Suppose that some feature has been designed in a way that you
believe will be awkward and annoying for the customer. You raise the issue and the project
manager rejects your report as subjective. It’s “not a bug.” Where do you go if you don’t w
to drop this issue? One approach is to keep taking it to higher-level managers within product
development (or within the company as a whole). But without additional arguments, you’ll
often keep losing, without making any friends in the process.

Suppose that you change your emphasis instead. Rather than saying that, in your
opinion, customers won’t be happy, collect some other data:2

〈 Ask the writers: Is this design odd enough that it is causing extra effort to
document? Would a simpler design reduce writing time and the number of pages
in the manual?

〈 Ask the training staff: Are they going to have to spend extra time in class, and t

write more supplementary materials because of this design?

¤ Ask Technical Support and Customer Service: Will this design increase support

costs? Will it take longer to train support staff? Will there be more calls for
explanations or help? More complaints? Have customers asked for refunds in
previous versions of the product because of features designed like this one?

1 I am most definitely not saying that a tactical approach is more practical than an integrated, long-term approa
Gryna notes that there are two common approaches to cost-of-quality programs. One approach involves one-sh
studies that help the company identify targets for significant improvement. The other approach incorporates
quality cost control into the structure of the business. (Gryna, 1988, in Juran, J. M. & Gryna, F. M. (1988, 4th Ed.),
Juran’s Quality Control Handbook, McGraw-Hill, pages 4.2 onward.) The one-shot, tactical approach can prove
the benefit of the more strategic, long-term system to a skeptical company.
2 Be sensitive to how you do this. If you adopt a tone that says that you think the project manager and the
programming staff are idiots, you won’t enjoy the long-term results.

Copyright (c) 1997-1999 Cem Kaner. All Rights Reserved. 36

Copyright (c) 1997-1999 Cem Kaner. All Rights Reserved. 37

Copyright (c) 1997-1999 Cem Kaner. All Rights Reserved. 38

Copyright (c) 1997-1999 Cem Kaner. All Rights Reserved. 39

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 40

Notes

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 41

Law of Software Quality

Section 2.

Some Interesting Lawsuits

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 42

Some interesting lawsuits

 Family Drug Store

Family Drug Store of New Iberia,
Inc. v. Gulf States Computer
Services, Inc.

563 So.2d 1324 (Louisiana Court of
Appeal, 1990).

Must a publisher of a poorly
designed product satisfy its
customers?

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 43

Some interesting lawsuits

Family Drug Store

Family Drug Store of New Iberia
The plaintiffs are a couple of pharmacists who bought a
computer program known as the Medical Supply System
from Gulf States. After they realized what they had bought,
they asked for, and then sued for, a refund. Here were some
of the problems of the system:

“(1) all data had to be printed out, and could not be
viewed on the monitor;

(2) the information on the monitor would appear in
code;

 (3) numerical codes were needed in order to open a
new patient file

(4) the system was unable to scroll.
The court found that the seller had not in any ay
misrepresented the system, and that it as not useless even
though it was awkward to use. Further, the price of the
software

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 44

 Some interesting lawsuits

Step-Saver Data Systems

Step-Saver Data Systems v. Wyse
Technology and The Software Link.

 939 F.2d 91 (3rd Circuit, United
States Court of Appeals) 1991.

Is a shrink-wrap warranty
disclaimer valid?

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 45

Some interesting lawsuits

Step-Saver Data Systems

Step-Saver (a vertical market reseller) repeatedly
bought Multilink Advanced, an allegedly MS-
DOS compatible operating system, from The
Software Link (TSL). On each box was a
disclaimer: the software was sold AS IS, without
warranty; TSL disclaimed all express and implied
warranties; and a purchaser who didn’t agree to
this disclaimer should return the product,
unopened, to TSL for a refund.

Step-Saver sued TSL, claiming that Multilink
Advanced was not MS-DOS compatible. TSL
argued that Step-Saver had accepted the terms of
the warranty disclaimer when it opened each
package, and therefore Step-Saver could not sue.

Should this disclaimer be valid for the first sale?
Subsequent sales?

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 46

Some interesting lawsuits

Burroughs v. Hall Affiliates

Burroughs Corporation v. Hall
Affiliates

423 So. 2d 1348 (Supreme Court of
Alabama, 1982).

Is publisher liable for negligent
(rather than fraudulent)
misrepresentations?

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 47

Some interesting lawsuits

Burroughs v. Hall Affiliates

Hall imports artificial flowers, and bought a Burroughs
B80-40 computer in 1977 to handle its accounting and
inventory functions. The system didn’t work and Hall
sued claiming that Burrough’s salespeoples’
representations about the system were fraudulent. The
court listed 4 representations:

1. the machine would do inventory and accounting
simultaneously

2. the machine was capable of multiprogramming
3. the machine was capable of operating a terminal

display unit in a data communications
environment

4. the machine and all of its component parts were
new.

The court found that there was no evidence of intentional
misrepresentation.
Should Burroughs be held liable for its mistake?

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 48

Some interesting lawsuits

Therac-25

The Therac-25 accidents--
Nancy Leveson, Safeware: System
Safety & Computers. Addison
Wesley, 1995, Appendix A.

Should a software developer be
liable for injurious user
errors?

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 49

Some interesting lawsuits

Therac-25

Therac 25 is a linear accelerator that does
radiation therapy. There are two settings:

⌧ concentrated beam, high intensity X-rays, and

⌧ lower energy electron beams used to destroy
tumors that are closer to the surface.

Therac 25 stems from Therac 20 and Therac 6,
which had hardware interlocks. You couldn’t set
the high energy level without having everything
else consistent. Here, the hardware interlock was
gone, and the software could be overridden,
which it was. 6 major accidents. The incidents
involved some degree of user error (wrong
setting, ignored user error message).

Should AECL (Atomic Energy Canada)

be held liable anyway?

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 50

Some interesting lawsuits

GM v. Johnston

General Motors v. Johnston

592 So.2d 1054 (Supreme Court of
Alabama, 1992)

What’s a company’s
responsibility for hazards
discovered after product
release?

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 51

Some interesting lawsuits

GM v. Johnston

Johnson purchased a new Chevrolet 2500 pickup in
1988, drove it for less than 200 miles, over two days.
With his 7 year old grandson in the truck, he pulled up
to a stop sign, started the truck again, and it stalled. A
larger truck collided with his truck, injuring Johnson
and killing the grandson.

GM had received reports of stalling problems in
vehicles like this one, and a dealer service bulletin
advised dealers that “rolling, hunting or surging idles”
could be fixed by replacing the PROM. The software
on the modified PROM was changed from the original
software. This PROM controlled the fuel injector. GM
chose to replace the PROM for complaining customers,
but not to announce a recall and make the change
widely available.

Should GM have issued a

recall or a warning to Johnson?

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 52

Six interesting lawsuits

Winter v. G.P. Putnam

Winter v. G.P. Putnam’s Sons

938 F.2d 1033, (9th Circuit, United
States Court of Appeal, 1991.)

Is a publisher liable for injury-
causing errors in its
publications?

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 53

Six interesting lawsuits

Winter v. G.P. Putnam

Winter became seriously ill from picking and
eating mushrooms after relying on The
Encyclopedia of Mushrooms, published by
Putnam. Putnam did not verify the material in
the book and did not intentionally include the
error.

Should Putnam be held liable for this
unintended misinformation?

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 54

Notes

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 55

Law of Software Quality

Section 3.

Ground Rules of Lawsuits

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 56

Ground Rules

Overview of a Lawsuit

Something bad happens
Pre-complaint negotiations
File a complaint
<Class certification hearing>
Test for failure to state a claim
File answer to the complaint
Discovery
Summary judgment motion
Trial
Damages
<Hearing on costs / fees>
Appeal

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 57

Ground Rules

Due Process

Due process.

⌧The claim must fit the precise
requirements of a clear legal rule.

Due Process

⌧No person shall . . . be deprived of life,
liberty, or property without due
process of law. 5th Amendment.

⌧Nor shall any State deprive any person
of life, liberty, or property, without
due process of law. 14th Amendment.

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 58

Ground Rules

Discovery

Discovery is open.

⌧The parties to the trial get to find out
about each other.

⌧The plaintiff can ask about anything that is
not privileged, if the query is calculated to
lead to the discovery of admissible evidence.

⌧No privilege against self-incrimination in
civil controversy, and no privilege ever for a
corporation.

⌧Your marketing plans, customer support
records, bug tracking system, and internal
design review documents are discoverable.

⌧There is a limited exception for after-
corrected defects

⌧There is a limited privilege for corporate self-
examination.

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 59

Ground Rules

Proof

Plaintiff must prove her case by

⌧a preponderance of the evidence
(more likely to be true than not)

or by

⌧clear & convincing evidence.
If the plaintiff doesn’t prove her case,
the defendant wins.

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 60

Notes

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 61

Law of Software Quality

Section 4.

The Key Legal Theories

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 62

Key Legal Theories

 The Key Legal Theories

1. Intentional torts

2. Contracts

3. Misrepresentation

4. Consumer protection

5. Negligence

6. Strict products liability

7. Malpractice

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 63

Key Legal Theories

1. Intentional Torts

Intentional unlawful interference with, or
harm to, a person or her property,
reputation, privacy, or business
relations.

Examples:

⌧Battery

⌧Conversion

⌧Computer tampering

⌧Libel

⌧Fraud

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 64

Key Legal Theories

2. Contract Theories

A contract is an agreement between two
or more people (or companies) that
creates obligations to do or to provide
particular things.

A software contract can involve goods
(such as a program bought at a store) or
services (such as custom programming),
or some mix of the two (such as a
program that comes with a maintenance
contract).

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 65

Key Legal Theories

3. Misrepresentation

⌧ False representation by the seller

⌧ of a material (important) fact

⌧ that the plaintiff justifiably relies on

⌧ and as a result, the plaintiff is damaged.
Misrepresentation can be:

⌧ Innocent

⌧ Negligent

⌧ Fraudulent
A misrepresentation is fraudulent if the maker

⌧ knows or believes that the matter is not as he
represents it to be, or

⌧ does not have the confidence in the accuracy of his
representation that he states or implies, or

⌧ knows that he does not have the basis for his
representation that he states or implies

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 66

Key Legal Theories

4. Consumer Protection

Deceptive Trade Practices

Unfair Competition

Additional Warranty Rules

Additional Leasing Rules

Additional Negative Option Rules

False Claims Act

Uniform Deceptive Trade Practices Act

A person engages in deceptive trade
practices when s/he represents that goods
or services have sponsorship, approval,
characteristics, ingredients, uses, benefits,
or quantities that they do not have.

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 67

Key Legal Theories

5. Negligence

Elements of a negligence case:

⌧Duty:
» products must not create an unreasonable

risk of injury or property damage.

⌧Breach

⌧Causation

⌧Damages

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 68

Key Legal Theories

Contracts vs Negligence

Contracts
Law of quality
Duty is to give the
customer what s/he
paid for.
Likely types of suits:
⌧ corrupts or loses its

own data
⌧ doesn’t work; never

delivered
⌧ erroneous reports
⌧ bugs that waste time or

make the program hard
to use

⌧ compatibility features
don’t work

⌧ cost-reduction promises
aren’t realized

Negligence
Law of safety
Duty is to make
products that are not
unreasonably unsafe.
Likely types of suits:
⌧ corrupts or loses data

obtained from some
other program

⌧ damages connected
peripherals

⌧ injures the user
⌧ injures customer who

follows its directions
⌧ embedded software

causes accidents
⌧ UI design causes

accidents

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 69

Key Legal Theories

6. Strict Products Liability

A company is liable to a victim if it sells a
product that is:

⌧defective, and

⌧unreasonably dangerous, and

⌧the cause of personal injury or
property damage

A design may be unreasonably
dangerous if it fails to meet the safety
expectations of a reasonable consumer.

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 70

Key Legal Theories

7. Malpractice

Malpractice is the failure to exercise the
skill and knowledge normally possessed
by members of a profession or trade.

⌧Programmer malpractice?

Getting licensed means that we will
finally qualify to be sued in malpractice.

⌧Professional advice malpractice?

The more your advertising & docs
make a customer think she can replace
a professional with your product, the
better her chances of success in a
malpractice suit if your program gives
bad advice.

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 71

Notes

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 72

Law of Software Quality

Section 5.

A Quick Scan of Damages

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 73

Damages

Damages

You can collect different types of
damages under different legal theories.
Let’s very quickly scan through a few
damages definitions:

⌧Contract damages

⌧Compensatory & punitive

⌧Economic & non-economic

⌧Statutory

⌧Costs & attorney fees

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 74

Damages

Contract Damages

Benefit of the bargain

⌧The difference between the purchase price
(or the value stated by the seller) and the
actual value of the product

Incidental damages

⌧include costs of returning a defective
product and finding a replacement;
handling expenses, processing expenses.

Consequential damages

⌧includes economic losses and costs of
injuries and property damage

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 75

Damages

Compensatory & Punitive

Compensatory damages

⌧These make good the loss without giving
the buyer or victim any profit.

Punitive damages

⌧These are awarded to punish the
defendant, not to compensate the plaintiff.

⌧These are rarely awarded, hard to get, and
closely scrutinized by trial and appellate
judges. You must prove, by clear &
convincing evidence, that the defendant’s
behavior was fraudulent, oppressive, or
outrageous.

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 76

Damages

Economic & Non-Economic

Economic losses

⌧benefit of the bargain damages, repair
costs, incidental expenses, down time,
loss of use, lost profits

Non-economic damages

⌧payment for suffering, pain, fear, loss
of consortium

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 77

Damages

Statutory

Damages that are recoverable by the
plaintiff in an amount that is determined
by statute rather than by the amount of
harm suffered by the plaintiff.

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 78

Damages

Costs & Attorney Fees

Costs

⌧Courts normally award costs
Attorney fees

⌧Normally unavailable, but
» may be provided by contract

» unfair trade practice suits

» several other statutes

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 79

Damages

Damages Available Under
Different Legal Theories

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 80

Notes

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 81

Law of Software Quality

Section 6.

Intentional Torts

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 82

Key Legal Theories

1. Intentional Torts

Intentional unlawful interference with, or
harm to, a person or her property,
reputation, privacy, or business
relations.

Examples:

⌧Battery

⌧Conversion

⌧Computer tampering

⌧Libel

⌧Fraud

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 83

Intentional Torts

Computer Tampering,
Conversion

Computer tampering

⌧Unlawful access to the computer of another,
or introduction of software that causes
damage to the computer of another.

Conversion case

⌧Clayton X-Ray Co. v. Professional Systems
Corp. (WD 43583, Mo. Ct. App., W.D.
8/6/91; 9 Computer Law 38). PSC introduced
a time bomb b/c Clayton had not fully paid
for the software. The bomb shut down the
system. PSC refused to turn the system back
on until Clayton paid for it. Jury awarded
punitive and compensatory damages.

⌧This is not a case of time bomb in the initial
product. This is a time bomb introduced after
the fact, by intrusion into plaintiff’s computer.

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 84

Notes

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 85

Law of Software Quality

Section 7.

Contracts:

Failure to Perform the
Contract

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 86

Contracts

Fundamentals of
Contract Law

⌧offer

⌧counter-offer

⌧acceptance

⌧consideration

⌧battle of the forms

⌧warranty

⌧modification
» the pre-existing duty rule

⌧oral contracts are valid (except under
statute of frauds)

⌧contracts by conduct are valid

⌧parole evidence

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 87

Contracts

Uniform Commercial Code

Article 2 of the Uniform Commercial Code
governs sales of goods.

⌧ gap fillers, and implied terms
⌧ implied warranty of merchantability
⌧ implied warranty of fitness for a particular

purpose
⌧ battle of the forms rules:

» contract by conduct
» forms as proposals for modification
» materiality

⌧modification rules
⌧ some rules apply only to merchants

Article 2 has been consistently applied to COTS
transactions, but much less often to custom
service contracts (e.g. custom software,
consulting, etc.)

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 88

Contracts

Family Drug Store v.
Gulf States Computer

The basic holding of this case is that a computer
program can be extremely awkward to use and
badly designed without imposing liability on the
seller.

Two pharmacists bought a computer program
known as the Medical Supply System from Gulf
States. After they realized what they had bought,
they asked for, and then sued for, a refund.

The court found that the seller had not in any ay
misrepresented the system, and that it as not
useless even though it was awkward to use.
Further, the price of the software was about $2500
compared to $10,000 for other packages. The
plaintiffs had gotten what they’d paid for.

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 89

Contracts

Family Drug Store v.
Gulf States Computer

Don’t take Family Drug Store to mean that a bad
user interface is not a breach of contract. Other
cases have found a breach of contract because of a
bad UI.

What counts in the contract case is what was
promised.

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 90

Contracts

Custom Software Development:
Waterfall Model

Under this model, software development
proceeds in discrete stages:

⌧requirements analysis

⌧specification

⌧design

⌧coding

⌧testing

⌧product release / delivery

⌧post-sale support
This approach may not be optimal for
development, but it seems clear for contract
control.

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 91

Contracts

Custom Software Development:
Dispute Resolution

⌧The typical contract considers the
possibility of a complete breakdown of
the agreement and manages risks and
ambiguities through dispute resolution
clauses (forum selection, arbitration,
etc.)

⌧Contracts are less likely to include
dispute resolution procedures to follow
mid-project, if needed, that are
designed to save the project.

Copyright (c) 1997-1999 Cem Kaner. All Rights Reserved. 92

Copyright (c) 1997-1999 Cem Kaner. All Rights Reserved. 93

Copyright (c) 1997-1999 Cem Kaner. All Rights Reserved. 94

Copyright (c) 1997-1999 Cem Kaner. All Rights Reserved. 95

Copyright (c) 1997-1999 Cem Kaner. All Rights Reserved. 96

Copyright (c) 1997-1999 Cem Kaner. All Rights Reserved. 97

(ii) the software fails to perform in conformance with
the specifications and this failure either deprives
the licensee of a significant benefit of the product
or results in costs to the licensee that exceed the
price paid for the software;

(iii) where the specifications are silent, the
software’s performance is unreasonable and it results
in costs to the licensee that exceed the price paid
for the software. The licensee has the burden of
demonstrating that a reasonable licensor would
consider the software’s performance to be
unreasonable.

(d) If the contract is between merchants, and it contains
specification documents, then a breach is material if:

(i) the software fails to perform in conformance with and
in the time required by express performance standards
or specifications;

(ii) the software fails to perform in conformance with the
specifications and this failure either deprives the
licensee of a significant benefit of the product or
results in costs to the licensee that exceed the
price paid for the software;

(iii) where the specifications are silent, the software’s
performance is unreasonable and it results in costs
to the licensee that exceed the price paid for the
software. The licensee has the burden of
demonstrating that a reasonable licensor would
consider the software’s performance to be
unreasonable.

(e) If the contract is not between merchants, and the licensor
provides the specification documents that are incorporated
in the contract, then a breach is material if:

(i) the software fails to perform in conformance with and
in the time required by express performance standards
or specifications;

(ii) the software fails to perform in conformance with the
specifications and this failure either deprives the
licensee of a significant benefit of the product or
results in costs to the licensee that exceed the
price paid for the software;

(iii) the software fails to perform in conformance with the
end user documentation or other documentation
delivered to the licensee and this failure either
deprives the licensee of a significant benefit of the
product or results in costs to the licensee that
exceed the price paid for the software;

Copyright (c) 1997-1999 Cem Kaner. All Rights Reserved. 98

(iv) where the specifications and other documentation
are silent, the software’s performance is
unreasonable and as a result, it either deprives the
licensee of a significant benefit of the product or
it results in costs to the customer that exceed the
price paid for the software. The licensee has the
burden of demonstrating that a reasonable person
would consider the software’s performance to be
unreasonable.

(f) If the contract is for a mass-market license, then a breach
is material if:

(i) the software fails to perform in conformance with the
end user documentation or other documentation
delivered to the licensee and this failure either
deprives the licensee of a significant benefit of the
product or results in costs to the customer that
exceed the price paid for the software;

(ii) where the documentation is silent, the software’s
performance is unreasonable and as a result, it
either deprives the licensee of a significant benefit
of the product or it results in costs to the licensee
that exceed the price paid for the software. The
licensee has the burden of demonstrating that a
reasonable person would consider the software’s
performance to be unreasonable.

(g) A material breach of contract occurs if the cumulative
effect of nonmaterial breaches by the same party satisfies
the standards for materiality.

(h) If there is a breach of contract, whether or not material,
the aggrieved party is entitled to the remedies provided
for in this article and the agreement.

What Happens from Here?
By the time you read this proposal, I will have circulated it to the Article 2B Drafting
Committee. They’ll probably consider it at the January 10-12 Drafting Committee
meeting at the Sofitel Hotel in Redword City, California. The next meeting of the
Committee will be in Atlanta from February 21 to 23, 1997. I will compile comments
that people send me, and will summarize them for this meeting. You can also attend
either meeting yourself. Few of the attendees are non-lawyers, but you are welcome
speak if you have something informative to say.

This process will continue for a few more months (four meetings are scheduled in
1997), probably resulting in legislation that is introduced in the state legislatures in
1998. Whether you or I participate in this process or not, the result will include rules
that govern software quality, laying out the ground rules under which we decide
whether bugs are features and whether they need to be fixed. We can influence the
process.

To read the latest draft of Article 2B, and to send comments directly to Ray Nimmer
the Drafting Committee’s Reporter, visit the Article 2B home page at
www.law.uh.edu/ucc2b.

Copyright (c) 1997-1999 Cem Kaner. All Rights Reserved. 99

APPENDIX

The following notes weren't included in the SQA article but did appear in the memo
actually considered by the UCC Drafting Committee.

How Should We Define a Serious Defect?
Failure to conform to specifications is a common theme in legal books, but many of
the software development contracts provide vague, incomplete specifications that w
change over time without being updated in the contract itself. Discussions within the
software development community consistently recognize that most failures in
commercial software products are due to errors in the specifications or requirements
A widely used number is that 80% of the money spent fixing or dealing with softwar
problems can be traced back to requirements errors.

As a result, texts that focus on software errors don’t limit themselves to failure to
meet a specification (this type of failure is called nonconformance). Here are some
examples from well respected texts in the field:

IEEE (1989), IEEE Standard Dictionary of Measures to Produce Reliable
Software, ANSI/IEEE Standard 982.1-1988, p. 13:

Defect: A product anomaly. Examples include such things as (1)
omissions and imperfections found during early life cycle phases and
(2) faults contained in software sufficiently mature for test or
operation. See also fault.

IEEE (1994), IEEE Standard Classification for Software Anomalies, IEEE
Standard 1044-1993, p. 3.

Anomaly: Any condition that deviates from expectations based on
requirements specifications, design documents, user documents,
standards, etc., or from someone’s perceptions or experiences.
Anomalies may be found during, but not limited to, the review, test,
analysis, compilation, or use of software products or applicable
documentation.

Grady, Robert B. & Caswell, Deborah, L. (1987) Software Metrics: Establishing a
Company-Wide Program. PTR Prentice-Hall, p. 78

A defect is any flaw in the specification, design, or implementation of
a product. . . . If a flaw could not possibly have been detected, or if it
could have been detected and would not have been corrected then it
an enhancement. Defects do not include typographical or grammatica
errors in engineering documentation.

Ishikawa, Kaoru (translated by David J. Lu) (1985) What is Total Quality
Control? The Japanese Way, Prentice-Hall. (Ishikawa is the leading Japanese
quality control theoriest):

Copyright (c) 1997-1999 Cem Kaner. All Rights Reserved. 100

On page 46 ff. he explains why he doesn’t trust quality as measured i
terms of compliance with standards and specifications. The problem is
that these are not true measures of the quality of the product. He
works through an excellent example dealing with a role of newsprint.
The true measure of quality is whether the paper rips while on the
rotary press. Published standards, in terms of such things as tensile
strength, provide only secondary measures of how the product will
perform in the field. Continuing, on page 56, “There are no
standards—whether they be national, international, or company-
wide—that are perfect. Usually standards contain some inherent
defects. Consumer requirements also change continuously, demanding
higher quality year after year. Standards that were adequate when th
were first established, quickly become obsolete. [¶]We engage in QC
satisfy customer requirements”

Jones, Capers (1991), Applied Software Measurement, McGraw-Hill, page 273.

A software defect is simply a bug which if not removed would cause a
program or system to fail or to produce incorrect results. Note: the
very common idea that a defect is a failure to adhere to some user
requirements is unsatisfactory because it offers no way to measure
requirements defects themselves, which constitute one of the larger
categories of software error.

Mundel, August, B. (1991) Ethics in Quality, ASQC Quality Press, p. 164.

Any variation from the specifications is a nonconformity There is
a group of nonconformities which represent serious threats to the
welfare of users and bystanders. These nonconformities are called
defects, and they not only can cause injury but may also result in the
manufacturers, designers, or sellers being sued under the product
liability laws. There are also a class of defects called design defects
which can be responsible for customer dissatisfaction, loss, injury or
death. Despite the fact that all of the product conforms to the design
the product is faulty and is not properly designed.

Myers, Glenford J. (1976), Software Reliability: Principles & Practices, John
Wiley & Sons, pp. 4-6. This is one of the seminal books in the software testin
/ quality control literature.

One common definition is that a software occurs when the software
does not perform according to its specifications. This definition has
one fundamental flaw: it tacitly assumes that the specifications are
correct. This is rarely, if ever, a valid assumption: one of the major
sources of errors is the writing of specifications. . . . [¶] A second
common definition is that an error occurs when the software does not
perform according to its specifications providing that it is used within
its design limits. This definition is actually poorer than the first one....

Copyright (c) 1997-1999 Cem Kaner. All Rights Reserved. 101

 [¶] A third possible definition is that an error occurs when the
software does not behave according to the official documentation or
publications supplied to the user. Unfortunately, this definition also
has several flaws. There exists the possibility that the software does
behave according to the official publications but errors are present
because both the software and the publications are in error. A second
problem occurs because of the tendency of user publications to
describe only the manual for a time-sharing system that states, “To
enter a new command press the attention key once and type the
command.” Suppose that a user presses the attention key twice by
accident and the software system fails because its designers did not
plan for this condition. The system obviously contains an error, but we
cannot really state that the system is not behaving according to its
publications. [¶] The last definition that is sometimes used defines an
error as a failure of the software to perform according to the original
contract or documentation. Although this definition is an
improvement over the previous three, it still has several flaws . . .
written user requirements are rarely detailed enough to describe the
desired behavior of the software under all possible circumstances. [¶]
There is, however, a reasonable definition of a software error that
solves the aforementioned problems: A software error is present when
the software does not do what the user reasonably expects it to do.”

Roetzheim, William H. (1991) Developing Software to Government Standards,
Prentice-Hall, p. 146

“Software defects can be divided into four broad categories: (1)
requirements defects, (2) design defects, (3) code defects, and (4)
documentation defects.” See also Dunn, Robert (1984) Software Defect
Removal, McGraw-Hill, p. 6-7 for the same distinctions.

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 102

Notes

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 103

Law of Software Quality

Section 8.

Contracts:

Breach of Warranty

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 104

Contracts: Warranties

Express Warranty

A warranty is a statement of fact, either
articulated or implied by law, respecting the
quality or character of the goods to be sold.

Express Warranties are defined in the
Uniform Commercial Code (2-313). Under
the Uniform Commercial Code an express warranty is:

2-313(a) Any affirmation of fact or promise made
by the seller to the buyer which relates to the
goods and becomes part of the basis of the
bargain . . .

2-313(b) Any description of the goods which is
made part of the basis of the bargain . . .

2-313(c) Any sample or model which is made part
of the basis of the bargain.

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 105

Contracts: Warranties

Implied Warranties

Under U.C.C. 2-314, a warranty that goods
are merchantable is implied in a contract for
their sale.

⌧Merchantability requires that the
program do what a reasonable
customer would expect it to do (and
that it be salably packaged).

⌧The seller can exclude the warranty,
but it must be done correctly.

California Civil Code 1792.4 (a) No sale of goods
. . ., on an “as is” . . . basis, shall be effective to
disclaim the implied warranty of merchantability .
. . unless a conspicuous writing is attached to the
goods which clearly informs the [consumer],
prior to the sale, in simple and concise language.

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 106

Contracts: Warranties

Warranty Disclaimers

NoName Software warrants the diskettes on which the programs are furnished to
be free from defects in the materials and workmanship under normal use for a
period of ninety (90) days from the date of delivery to you as evidenced by your
proof of purchase.

The entire liability of NoName Software, and your exclusive remedy, shall be
replacement of any diskette which does not meet the Limited Warranty and which is
returned freight prepaid, to NoName Software. NoName Software does not warrant
that the functions contained in the program will meet your requirements or that the
operation of the programs will be uninterrupted or error-free. THE PROGRAMS
CONTAINED IN THIS PACKAGE ARE PROVIDED “AS IS” WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK RELATED
TO THE QUALITY AND PERFORMANCE OF THE PROGRAMS IS ON YOU. IN
THE EVENT THERE IS ANY DEFECT, YOU ASSUME THE ENTIRE COST OF
ALL NECESSARY SERVICING, REPAIR, OR CORRECTION. IN NO EVENT
SHALL NoName BE LIABLE FOR ANY LOSS OF PROFIT OR ANY OTHER
COMMERCIAL DAMAGE, INCLUDING BUT NOT LIMITED TO SPECIAL,
INCIDENTAL, CONSEQUENTIAL, OR OTHER DAMAGES. SOME STATES DO
NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO THE ABOVE
EXCLUSION MAY NOT APPLY TO YOU. THIS WARRANTY GIVES YOU
SPECIFIC LEGAL RIGHTS AND YOU MAY HAVE OTHER RIGHTS WHICH VARY
FROM STATE TO STATE.

This Agreement constitutes the complete and exclusive statement of the terms of
the agreement between you and NoName Software. It supercedes and replaces
any previous written or oral agreements and communications relating to this
software. No oral or written information or advice given by NoName Software, its
dealers, distributors, agents or employees will create any warranty or in any way
increase the scope of the warranty provided in this agreement, and you may not
rely on any such information or advice.

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 107

Contracts: Warranties

Documentation is an
Express Warranty

You can’t disclaim an express
warranty -- you are accountable for

your claims.

Uniform Commercial Code 2-316 (1):

Words or conduct relevant to the creation of
an express warranty and words or conduct
tending to negate or limit warranty shall be
construed whenever reasonable as consistent
with each other; but . . . negation or limitation
is inoperative to the extent that such
construction is unreasonable.

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 108

Contracts: Warranties

Testing Documentation:
Why is it Important?

Errors in the manual increase risks
of warranty liability.

Additionally, testing the documentation
improves the reliability of the program.

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 109

Contracts: Warranties

Warranties & Misrepresentations:
What Must You Test?

Advertisements

Published specifications

Interviews

Box copy

Fax-backs

Manual

Help system

Warranty

Web pages

Readme

Advice given to customers on Internet,
CompuServe or AOL

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 110

Contracts: Warranties

Disclaimer Analysis:
Limit Duration of Warranties

“NoName Software warrants the diskettes on
which the programs are furnished to be free
from defects in the materials and
workmanship under normal use for a period
of ninety (90) days from the date of delivery
to you as evidenced by your proof of
purchase.”

The Magnuson-Moss Warranty -- Federal
Trade Commission Improvement Act (15
USC 2308) allows warrantors to limit implied
warranties to the same duration as express
warranties as long as the duration is
reasonable and not unconscionable.

The Song-Beverly Act sets a minimum of 60
days.

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 111

Contracts: Warranties

Shrink-Wrapped Disclaimers

Shrink-wrapped warranty disclaimers are
ineffective because they are hidden. This
is not a special problem for software; it is
standard UCC practice. See, for example,
B. Clark & C. Smith, The Law of Product
Warranties, Warren, Gorham & Lamont, section
4.03.

⌧Conspicuousness avoids post-sale
change of the contract
⌧Conspicuousness is an incentive

for competition
FTC data: huge percentage of customers
pay attention to warranty terms when
they comparison shop. Claims that
consumers ignore warranty terms are
simply incorrect.

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 112

Contracts: Warranties

Shrink-Wrap Warranty
Disclaimer Ruled Invalid

In the case of Step-Saver Data Systems, Inc. v. Wyse Technology and The Software
Link, Inc., the United States Court of Appeals for the Third Circuit held that a
disclaimer of all express and implied warranties, printed on the outside of the box,
was not binding on a mail order customer.
Step-Saver repeatedly bought Multilink Advanced, an allegedly MS-DOS
compatible operating system, from The Software Link (TSL). On each box was a
disclaimer: the software was sold AS IS, without warranty; TSL disclaimed all
express and implied warranties; and a purchaser who didn’t agree to this disclaimer
should return the product, unopened, to TSL for a refund.Step-Saver sued TSL,
claiming that Multilink Advanced was not MS-DOS compatible.
TSL argued that Step-Saver had accepted the terms of the warranty disclaimer when
it opened each package, and therefore Step-Saver could not sue.
Step-Saver made each purchase by telephone. The Court ruled that the essential
terms of the sale (such as price and quantity) were set out during the calls. The
warranty disclaimer on the box arrived later. Under Section 2-207 of the Uniform
Commercial Code, the disclaimer was merely a proposal by TSL to add a term to the
contract. Step-Saver was not required to accept this proposal. Having already bought
the product, Step-Saver could open it and use it without agreeing to this new
warranty disclaimer. Nor did it matter that Step-Saver placed additional orders after
seeing the disclaimer. TSL never insisted that Step-Saver agree to the disclaimer
during purchase negotiations (the telephone calls), therefore the disclaimer was not
part of any contract.
The Court said:

TSL has raised a number of public policy arguments focusing on
the effect on the software industry of an adverse holding concerning
the enforceability of the box-top license. We are not persuaded that
requiring software companies to stand behind representations
concerning their products will inevitably destroy the software
industry.

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 113

Contracts: Warranties

Additional Lecture Notes on
Shrink-Wrap Warranty

Arizona Retail Systems v. The Software Link: 831 F. Supp. 759 (D. Arizona, 1993).
Similar facts to Step-Saver Data, but --- ARS initially ordered a demo copy of the
product. The sale didn’t become final until 30 days had passed or ARS opened the
shrinkwrap on the full (not demo) version of the program. The disclaimer was on the
outside of the shrinkwrap. Then ARS ordered several more, in lots of 20(?). The
court ruled that:

⌧ As to the first purchase, the disclaimer was valid because it was conspicuously
made part of the terms of the purchase.

⌧ As to the later orders, by phone, the disclaimer was not part of the bargain.
TSL did not demand this during the telephone orders, and shipped without
getting this agreement. Therefore it was not part of the contract.

The most interesting part of the case was the briefs. TSL’s reply brief’s strongest
citation was to McCrimmon v. Tandy Corp. 313 SE.2d 15 (Ga 1991). Here, though,
the disclaimer was conspicuously on the sales invoice that was handed to the
customer at the cash register. The customer received it at the time of sale, before he
walked out the door, and the court held that this made it part of the original purchase
agreement.

Frank M. Booth, Inc. v Reynolds Metals Co., No. Civ. S-89-0048 (DFL) (E.D. Cal.
January 9, 1991) and Diamond Fruit Growers, Inc. v. Krack Corp. 794 F.2d 1440
(9th Cir. 1986). Both cases involved a warranty disclaimer by the seller on the
seller’s purchase order confirmation, and there was a different set of warranty
provisions on the buyer’s purchase order. The seller (Reynolds) said in the paper that
seller’s acceptance of the deal was expressly conditioned on the other party’s
agreement to the terms and conditions of the seller’s form, and if the purchaser didn’t
respond within 10 days, it would be deemed to have agreed. The court rejected this
argument, saying that If a seller truly doesn’t want to be bound unless the buyer
assents to the terms of the seller’s agreement, the buyer can protect itself by refusing
to deliver the product until the purchaser agrees to the agreement’s terms.

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 114

Contracts: Warranties

Results of a Bad Disclaimer

Remember the story of the child who tried to take
all of the cookies out of the cookie jar, and
therefore got none?

⌧False disclaimer of express warranties.
(Worse, this most hurts customers who
trust the seller.)

⌧Hidden, post-sale, disclaimer of implied
warranty of merchantability.

⌧Refusal to take responsibility for
statements made by seller’s staff.

Potential Additional Costs:

⌧4-year warranty

⌧No remedy limitations

Copyright (c) 1997-1999 Cem Kaner. All Rights Reserved. 115

Cem Kaner, Ph.D., J.D. P.O. Box 1200
Attorney at Law Santa Clara, CA 95052
kaner@kaner.com 408-244-7000

LIABILITY FOR DEFECTIVE
DOCUMENTATION

Published in Software QA, Volume 2, #3, 1995, p. 8.

Copyright (c) 1995, Cem Kaner. All rights reserved.

In October, 1985, W.H. Daughtrey bought a diamond bracelet as a Christmas gift for his
wife from Sidney Ashe, a jeweler.1 He paid $15,000. After Daughtrey agreed to buy the
bracelet, Ashe filled out an appraisal form and put it in the box with the bracelet. The
appraisal said that the diamonds were of v.v.s. quality (a high grade). Daughtrey didn’t see
the appraisal until later, probably not until the box was opened at Christmas.

In 1989, Daughtrey discovered that the diamonds were not of v.v.s. quality. Ashe
offered a refund. Daughtrey refused, and demanded that the diamonds in the bracelet be
replaced with diamonds that were of v.v.s. quality. Ashe refused. Daughtrey sued. He said
that the statement that the diamonds were of v.v.s. quality was a description of the goods
by the seller. According to the Uniform Commercial Code,

2-313(b) any description of the goods which is made part
of the basis of the bargain creates an express warranty
that the goods shall conform to the description.

Therefore, Daughtrey said, Ashe created a warranty that the diamonds were of v.v.s.
quality, and breached it by selling a bracelet whose diamonds were of a lower grade. Ashe
argued that this claim couldn’t have been a warranty because he never called it a warranty
and Daughtrey didn’t read the claim until long after the sale. How could this description be
part of the “basis of the bargain”?

Ashe won -- in the trial court. But the Supreme Court of Virginia overruled the trial
court. Quoting the Official Comments to the Uniform Commercial Code, the Court said:

The whole purpose of the law of warranty is to determine
what it is that the seller has in essence agreed to sell.2

and

The precise time when words of description or affirmation
are made . . . is not material. The sole question is
whether the language is fairly to be regarded as part of
the contract.3

The Court concluded that Ashe had agreed to sell v.v.s. quality diamonds, and
therefore that he had breached the sales contract by selling inferior diamonds.

1 Daughtrey v. Ashe (1992) South Eastern Reporter, Second Series, volume 413, p. 336
(Supreme Court of Virginia).
2 Daughtrey v. Ashe (1992) p. 339.
3 Daughtrey v. Ashe (1992) p. 339.

Copyright (c) 1997-1999 Cem Kaner. All Rights Reserved. 116

So what does this have to do with computer software?

When a customer buys a computer program at a store, there is probably a manual in the box.
Just as there was an appraisal in the bracelet box. And the manual makes specific descriptive
statements about the program. Just as the appraisal made a specific descriptive statement about th
bracelet. You might not read the manual until long after you’ve bought the program. Just as
Daughtrey didn’t know anything about the appraisal until after the purchase. A judge in Virginia
would probably treat statements in the manual as warranties.1 The seller of the program would be
liable for breach of warranty if the software didn’t do what the manual stated.

Customer Care, Inc. publishes a survey every year, the Customer Care Survey: Service &
Support Practices in the Software Industry.2 In the 1994 survey, page V-29, 50% of the responding
companies said that they don’t put their manuals through Quality Assurance. I’m writing this
article to tell you that if you’re not testing your documentation, you’re making a big mistake.

If your manual or your help or your packaging say false things about the program, your
company is risking lawsuits for breach of warranty, for deceptive trade practices, and for
misrepresentation.3

Lawyers’ Tricks
Your company’s lawyers look for ways to protect your company from lawsuits. There are some thin
that they can do to reduce your company’s exposure. But if your company is at fault, they can’t be
expected to win every time.

For example, your lawyer can argue that your manual can’t be interpreted as a warranty unle
the customer read it and relied on its statements when making the decision to buy. That argument
will work in a few States. Variations on it will work in most States.4 But this won’t work in other
States, such as Virginia. And in most States, the argument will be very difficult if the customer did
flip through the manual before buying the program.5 What will work, in every State, is making sure
that the manual describes the program accurately. Your lawyer can’t do that. But you can.

1 Rather than relying on subsection (b) of Section 2-313 of the Uniform Commercial Code, whic
says that a description of the goods is a warranty, the Court might use subsection (a) which
says that “Any affirmation of fact or promise made by the seller to the buyer which relates to
the goods and becomes part of the basis of the bargain creates an express warranty that the
goods shall conform to the affirmation or promise.” Manuals are large, detailed collections of
statements (affirmations) of fact about the program that they document.
2 Customer Care, Inc., 235 Martling Ave., Tarrytown, NY 10591.
3 In the case of Burroughs Corporation v. Hall Affiliates (1992) Southern Reporter, Second Serie
volume 423, p. 1348 (Supreme Court of Alabama), Burroughs was held liable for fraud on the
basis of false statements from its sales representative to a customer. There was no claim that
the salesperson deliberately misled the customer. Alabama and several other States allow
customers to hold sellers liable for innocent and negligent misrepresentation, as well as for
deliberate fraud.
4 The laws vary across States. Good discussions are in Clark, B. & Smith, C. (1984, supplement
1994), The Law of Product Warranties, Warren Gorham & Lamont, and Rosmarin, Y.W. &
Sheldon, J. (1989, supplemented 1994) Sales of Goods and Services (2nd Ed.), National Consumer
Law Center.
5 If the customer looks through the manual before the sale, the court is likely to analyze the
manual in the same way as it would analyze advertising materials, such as brochures.
Statements of fact in brochures are generally treated as warranties. Published cases involving
manuals are rare, but a customer did examine an operator’s manual before buying a hay baler
the case of Schlenz v. John Deere Co. (1981), Uniform Commercial Code Reporting Service,
volume 31, p. 1020 (United States District Court, District of Montana). Statements in the man
were held to have created an express warranty of safety.

Copyright (c) 1997-1999 Cem Kaner. All Rights Reserved. 117

The shrink-wrapped warranty disclaimer is another trick we’re all familiar with. This is the
piece of paper that some software companies put inside the box, that says that the program is sold “A
Is” with no warranty. I’ll probably write more about this in a later column1 but the conclusion is a
simple one. These disclaimers may convince people who don’t know better that they have no rights,
but they are not in accordance with the Uniform Commercial Code. American courts throw them out2

These disclaimers also fare badly outside of the United States.3 Several software publishers now take
a different approach. They give purchasers an honest warranty that the software will perform
substantially in accordance with the packaging and documentation. Other software publishers
provide a satisfaction guarantee and let dissatisfied purchasers return the product for a full refund
within 30 days, 90 days or even a year.

In short, rather than relying on your lawyers to bail you out, you are better off making sure tha
your manual, help, and packaging match the program.

Bad Documentation and the Cost of Quality
The cost of quality associated with a product includes the cost of investments that your company
makes in developing a high quality product, and the expenses it suffers in dealing with the failings o
the product.4 Examples of quality-related costs include money spent on code inspections, design
reviews, defensive programming, fixing bugs, and answering customer complaints.

One of the key goals of quality engineering is reduction of the total cost of quality of a product.
For example, it is often cost-effective to spend more money preventing bugs, thereby reducing the
amount needed to support the product in the field. Successful problem prevention can reduce the tot
cost of quality.

It costs money to thoroughly test a manual. I’ll explain what I do, to thoroughly test a manual,
later. Here, the issue is money. My rule of thumb is that it takes about 15 tester-minutes per page o
the manual. I haven’t seen thorough tests go much faster than this. In one extreme case involving a
particularly buggy program and a problematic manual, I spent about an hour per page on the
manual.

You might test two or three drafts of a manual. It usually costs less to test a page for the second
time, but I don’t budget for less than 7.5 minutes per page.

Suppose that you spend a total of 100 tester-hours testing three drafts of a 200-page manual.
Add 20% for administrative overhead (meetings, status reports, etc.) and suppose that your
overhead+benefits+salary-weighted cost is $50 per hour per tester. Testing the manual cost $6000
over three tester-weeks. This is a significant quality-related expenditure. Some managers
automatically say “too much, don’t do it” in the face of this proposed expense.

1 If you urgently need a detailed discussion from me now, I can send you a few pages from a
draft of David Pels’ and my forthcoming book, Bad Software: Get Treated Fairly When You Buy
Computer Software.
2 Step-Saver Data Systems, Inc. v. Wyse Technology and The Software Link, Inc. (1991), Federal
Reporter, Second Series, volume 939, p. 91 (United States Court of Appeals for the Third Circui
and Arizona Retail Systems, Inc. v. The Software Link (1993) Federal Supplement, volume 831, p
759 (United States District Court, District of Arizona).
3 Lemley, M. (1995) “Intellectual Property and Shrinkwrap Licenses,” Southern California Law
Review, volume 68, page 1253, reviewed court cases and statutory law in 34 countries.
4 Campanella, J. (Ed.) (1990) Principles of Quality Costs: Principles, Implementation and Use. (2nd
Ed.) American Society for Quality Control, Quality Press.

Copyright (c) 1997-1999 Cem Kaner. All Rights Reserved. 118

To decide whether it really costs too much to test the manual, do some quality engineering. Wh
does your company save by making this three week, $6000 investment? Here is part of that analysis
for a software publishing company. When you think carefully about your own company, you’ll
probably be able to add several additional internal benefits that a good manual provides in your
company, and several additional risks that an error-prone manual poses for your company.

Within Product Development (including the Testing Group), the manual might serve several
functions, such as the following:

〈 It’s a test plan. It takes you on a tour of the entire program. No matter how carefully you
think you’ve tested, a thorough test of the manual against the program is likely to highlight
problems that you missed. Apart from its effectiveness as a revealer of new bugs, the manual
is a valuable test plan because of the credibility it provides for bug reports. Many bugs that
you find initially look small, and are deferred. But if one of these bugs is exposed again by
following the instructions or suggestions in the manual, you should re-open it, or re-report it.
The bug will appear much more significant if you can run across it by doing simple things tha
any user would do (such as following the instructions in the manual.)

〈 It’s a training tool. New programmers and testers who join the project fairly late use the
manual to learn about the program. Errors in the manual confuse them and can result in new
software errors or unproductive testing.

〈 It’s the external specification. Many product development groups stop maintaining the
external specification (if they ever maintained it) (assuming they ever wrote one), and rely on
the manual to serve this purpose. Errors in the manual cause all of the problems that you get
from errors in the specification.

Here are some of the problems that an error-ridden manual causes the Marketing and Sales
departments:

〈 Delayed collaterals. Before the product ships, your company probably creates brochures,
application notes, output samples, and several other materials that highlight what the
program can do. The people who create these are probably not experts with the program. The
probably rely on the most recent draft of the manual for guidance. Combine a few errors in
this draft of the manual with a few bugs in this pre-release version of the program, and it ca
take several days to produce output that should have been done in an hour.

〈 Delayed packaging. The Marketing staff probably create sample output that will be
photographed and put onto the program’s box. As with the collaterals, bad documentation can
delay this work. Also, they’ll probably use the manual as source material for box copy -- all
those descriptions of what the product can do, what equipment it’s compatible with, etc. Erro
in the manual can result in errors on the box. If your company is lucky you’ll discover these
before the box goes to the printer, so the cost is just the cost of delay, not reprinting or
stickering the box. These delays, however, can be very expensive. Your company can save
money, if it is manufacturing thousands of boxes, by booking time with a printer well in
advance. However, if you did this, but your company doesn’t get your artwork to the printer o
time, it might have to pay for that reserved press time, along with having to pay extra for las
minute printing arrangements. These expenses can dwarf that $6000 testing cost.

〈 Erroneous ad copy. Claims in the manual can turn into claims in the advertising materials.
Errors in the manual turn into errors in advertisements. Now you have to spend money on
corrective advertising. And some people will accuse you of false advertising or will want to
treat your ads as warranties. You will discover the hard way that $6000 buys more tester-
hours than lawyer-hours.

Copyright (c) 1997-1999 Cem Kaner. All Rights Reserved. 119

〈 Problems from pre-sale use of the manual. The manual might be available at trade
shows, or sent to user groups or prospective customers on request. People who review your
product for magazines will rely on the manual for information and instructions. In each of
these cases, errors in the manual can be embarrassing and expensive, and dealing with them
can waste the time of your senior Marketing or Sales staff.

Here are some of the problems that a weak manual will cause your Training staff.

〈 Your customers will need more training. If you provide training with your product, more
of your customers will need the training if your manual is bad. If you provide “free” training
your training costs rise. You train more people, and you probably have to train them for mor
hours per student. If you charge for training, your customers will be aware of all the extra
money they’re spending to be able to use your product.

〈 Your Training department might write its own manual. I’ve seen this several times.
The Training staff decide that they don’t like the manual, so they write their own and give i
to their students. Along with the expense of duplicated effort, this creates new testing
requirements and new opportunities for providing incorrect claims to your customers.

〈 Training sessions can become adversarial. If the manual has errors, some students will
quote them to the Trainer during the session. When the Trainer says X, the student says “B
the manual says Y. Why does it say that?” This can be disruptive and embarrassing,
especially if it happens several times. It reflects badly on the product and on your company,
not just on the Trainer.

And finally, here are some of the problems that errors in the manual will cause your technical
support and field support staff:

〈 It takes longer and costs more to prepare answer books. As part of preparation for
release of a new product, a well-organized Support staff prepares books or a database of
answers to the questions that they expect will be frequently asked, or that will be difficult to
answer. Errors in the manual make this task harder and more prone to error.

〈 It makes calls run longer. Sometimes the best way to handle a call is to alert the customer
to the relevant section in the manual. This can often be done without insulting the customer
and if that section provides a clear, detailed answer to a complex question, it might be just
what the customer needs. A question that would take an hour of handholding and
explanation over the phone becomes an easy two-minute call. On the other hand, if the
manual is untrustworthy, Support can’t push the customer back to the manual. Calls that
should be short become long.

〈 It results in more calls. If the manual says that the program works a certain way, and the
program doesn’t work that way, people will call and ask what the problem is. Along with
generating calls about the errors, errors in the manual teach some people that the program
(or the manual) is untrustworthy. Therefore they feel more justified in calling more often an
more quickly for more help, and in demanding that the help be provided free of charge
because, after all, the program is full of errors.

〈 It results in more difficult calls. Over the past two years, I’ve interviewed several Suppor
mangers and staff as part of my research for a new book. One of the common threads was th
difficulty of dealing with people who were misled by the manual. Imagine dealing with
someone who followed the instructions but wasn’t able to achieve the result that the manua
promised, or worse, who followed the instructions but lost data or got into trouble. These cal
are especially hard if you don’t have an easy solution to the callers’ problems. Calls like thes
burn Support staff out. People quit and your company has to hire and train new staff. This i
an outrageously expensive cost of a low quality manual.

Copyright (c) 1997-1999 Cem Kaner. All Rights Reserved. 120

As a Test Group Manager and as a Documentation Group Manager, I’ve run into management
resistance to doing what was required to test the manuals thoroughly. I respond with a rough sketc
of quality-related costs and risks. I lay out the near-term benefits of good testing and the near-term
and long-term risks of poor testing of the manual. I present this to my manager, and to my manage
manager’s manager if necessary.

This is persuasive stuff. To people who care about quality, you are talking about customer
satisfaction. To people who care about schedules, you are talking about efficiency -- a well-tested
manual helps you find bugs sooner and train Development, Marketing and Support staff faster. To
people who care about money, you are spending a little to save a lot. To people who are afraid of
making decisions, you are providing a business case that makes this decision look safe and obvious.
Finally, note that when you identify the in-house staff who will benefit from a thorough test of the
manual, you create a list of people who have a stake in lobbying their management to make sure th
you have the budget you need to do this task well. Go talk to them.

Doing the Testing
When you test the manual, you should use the program exactly as the manual says. Try every
example. Verify every Note, every Caution, every Tip. Try every suggestion. Check every explanatio
of every error message. Check every definition in the manual’s Glossary to be sure that they all mak
sense in the context of this program.

Check every limit (such as a claim that the program can store 100,000 records) and ask whethe
the program’s behavior is reasonable at the limit. For example, if a program can store 100,000
records, don’t just generate 100,000 records and see if it holds them all. How long does it take to
retrieve one or to enter one as you approach this limit? It might be reasonable for the program to
slow down as the database gets bigger, but if adding each new record takes 36 hours of computer
time, you know that the manual should be setting readers’ expectations at a lower number, or there
will be significant dissatisfaction.

Limits aren’t the only claims made about the program’s capabilities. Check all the other claims
too. Be skeptical. If the manual says that printed output is gorgeous on all supported printers, chec
it with an old 9-pin dot matrix, or some other printer that is likely to provide less gorgeous output
than your samples in the manual. Would the owner of that printer agree that you were getting as
gorgeous a result as you could get from that printer?

Every time you see a mismatch between the program and the manual, note the mismatch on th
manuscript (for the writer) and file a bug report. The bug report says that the manual and the
program differ, and asks which one is correct. Close the report as Fixed when either the program or
the manual is changed to eliminate the mismatch.

When you see outdated information in the manual draft, give the writer your notes on the rece
design changes to the program.

When it appears that the writer didn’t understand the purpose of a feature, try to provide the
writer with an explanation (if you can do it quickly).

If a section of the manual is confusing to read, test this area of the program. This is a sign that
this part of the program’s design is probably too complex. The area’s bug count will probably be high
This is an example of an important theme -- let the manual suggest to you areas of the program tha
will need more intense testing.

 When you are testing Help, you have additional concerns, because the Help is coded with jump
and branches, just like any other program. It can have bugs, maybe serious ones. You have to test
these, along with the content. My experience is that moderately thorough Help testing can easily
take twice as long as testing of the manual.

Copyright (c) 1997-1999 Cem Kaner. All Rights Reserved. 121

Along with testing Help and the manual, you should be testing box copy, brochure copy, and
other information that the company prepares in order to send to many customers.

In Closing
Thoroughly testing your documentation might be the most cost-effective thing you can do to
significantly reduce the probability that your company will be sued. It’s also an effective way to find
bugs in the program, a strong assistance to the writers, and a valuable source of information for you
company’s in-house users of the not-yet-released program. So many companies fail to take the
accuracy of their documentation seriously that you may have to educate your company before they’ll
grant you the time you need to do this job properly. Think your case through in terms of quality-
related costs, and schedule/efficiency-related benefits. A strong analysis and presentation along thes
lines will probably get you the approval you need for the testing, and enhance your credibility as a
business decision-maker at the same time.

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 122

Notes

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 123

Law of Software Quality

Section 9.

Contracts: Damage Control

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 124

Contracts: Damage Control

Limiting the Risks

In commercial contracts, buyers and sellers are
free to reallocate risks associated with breach of
contract. They can agree:

⌧To limit the liability of the breaching party

⌧To limit one side’s legal expenses by
requiring that lawsuits be brought in that
party’s home state, under its laws

⌧To limit the length of time in which the
aggrieved party can sue the breaching party

⌧Etc.
The provisions are suspect in non-negotiated
contracts, and are particularly suspect in contracts
that cannot be seen before the sale.

UCC Article 2 allows all customers to reject post-
sale material modifications to a contract.

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 125

Contracts: Damage Control

Restrict Remedies & Limit Liability
Under the U.C.C.

⌧Restrict remedy for defective product
to repair, replacement or refund

⌧Limit liability to direct damages (no
consequential damages)

⌧These are viable if customer is a
business, but not in some consumer
cases (e.g. personal injury).

Limitation can fail if court determines that seller
provided absolutely no remedy (remedy in
contract failed completely) or if the court
determines that the result doesn’t provide a
“minimum adequate remedy.”

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 126

Contracts: Damage Control

Allocating Risk of Tort Loss

U.C.C. 2-719 (3) Consequential damages
may be limited or excluded unless the
limitation or exclusion is unconscionable.
Limitation of consequential damages for
injury to the person in the case of
consumer goods is prima facie
unconscionable but limitation of damages
where the loss is commercial is not.

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 127

Contracts: Damage Control

Uniform Computer Information
Transactions Act

⌧Will govern all contracts involving
software and digitally stored
information.

⌧Opt-in clauses can bring in goods sold
with software.

⌧Was proposed as an amendment to the
Uniform Commercial Code, known as
Article 2B, but American Law Institute
withdrew from the drafting project after
calling for “fundamental revision”,
knocking it out as a UCC amendment.

⌧Current draft of UCITA at
www.law.upenn.edu/bll/ulc/ulc.htm

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 128

Proponents of UCITA

Software publishers

Database publishers (West / Lexis /
NASDAC)

CitiBank

Daimler Chrysler

National Conference of Commissioners
on Uniform State Laws

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 129

Opponents of UCITA

See your notes for a long list. Some examples:

⌧Consumers

⌧Insurance companies

⌧Librarians

⌧Staff of the Federal Trade
Commission

⌧25 Attorneys General

⌧American Intellectual Property Law
Assoc and IP section of the NY City
Bar Assoc

⌧Motion Picture Assoc, Newspaper
Assoc, Magazine Publishers

⌧Software developers

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 130

Software developers oppose
UCITA?

Software publishers might think that UCITA is
peachy but UCITA is opposed by every
software developers’ association that has
spoken on the matter, including:

⌧American Society for Quality Software
Division

⌧Association for Computing Machinery
⌧Independent Computer Consultants

Association
⌧Institute for Electrical & Electronic

Engineers
UCITA threatens our professionalism, our
drive to improve our craft and our products,
and the satisfaction of our customers.

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 131

UCITA creates disincentives
for quality

By cost-reducing consequences of shipping bad
software

⌧Cost of support is recoverable from
customer
⌧Litigation is almost impossible
⌧Remedies are minimal

By helping publishers limit presale competitive
information

⌧Hiding terms limits presale comparison
shopping
⌧Use restrictions kill critical magazine

reviews
By allowing publishers to discourage competition

⌧Eliminate competition from used
software
⌧Ban mass-market reverse engineering

except for DMCA exceptions
⌧Limit competitive use of provided

information

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 132

UCITA: No accountability
for known defects

Most defects in mass-market software are known at
time of release or soon thereafter, but many are left
undisclosed (let alone, unfixed.)

⌧Vendor can exclude incidentals and
consequentials. Incidentals include cost of
reporting the defect and returning the
product.

⌧Vendor can charge fees for support (e.g. $5
per minute). This is an incidental expense.

⌧Vendor can ship a known defect, then
charge for support call, agree to give a
refund (because of the defect) but keep the
support fee and not reimburse the shipping
cost.

ACM / IEEE / ICCA / Nader alternative proposal: default
to no consequentials UNLESS there is an
undisclosed known defect, then make damages
non-excludable.

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 133

UCITA: Eliminates Article 2
safeguards on remedy limitations.

Eliminates (see comment 6 to section
803) the Article 2 provision for a minimum
adequate remedy.

Eliminates the doctrine of failure of
essential purpose of a limited remedy by
expressly permitting boilerplate to
preserve exclusion of incidental and
consequential damages even when an
agreed exclusive remedy fails or is
unconscionable.

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 134

UCITA: Permits elimination
of the right to cancel

Section 803(a)(1) contains language
not found in Article 2 permitting a
limited remedy “precluding a party’s
right to cancel for breach of contract.”
This seems to permit boilerplate to
eliminate the right to refuse a tender
that does not conform to the contract,
thus effectively undermining the perfect
tender rule supposedly established for
mass-market transactions in Section
704(b). See also Section 802(d),
referring to terms prohibiting
cancellation.

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 135

UCITA: Narrowly defines
material breaches

UCITA 701 (b) A breach of contract is material if:

(1) the contract so provides;
(2) the breach is a substantial failure to

perform a term that is an essential element
of the agreement; or

(3) the circumstances, including the language
of the agreement, the reasonable
expectations of the parties, the standards
and practices of the business, trade, or
industry, or the character of the breach,
indicate that:

(A) the breach caused or is likely to
cause substantial harm to the
aggrieved party; or

(B) the breach substantially deprived
or is likely substantially to deprive
the aggrieved party of a significant
benefit it reasonably expected
under the contract.

This is allegedly based on the Restatement of
Contracts.

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 136

UCITA: Narrowly defines
material breaches

Compare UCITA to the Restatement (Second) of
Contracts § 241 (1981), which lists five factors:

1) the extent to which the injured party will
be deprived of the benefit he or she
reasonably expected;

2) the extent to which the injured party can
be adequately compensated for the benefit
of which the party will be deprived;

3) the extent to which the party failing to
perform or to offer to perform will suffer
forfeiture;

4) the likelihood that the party failing to
perform or to offer to perform will cure the
failure, taking into account all the
circumstances, including any reasonable
assurances; and

5) the extent to which the behavior of the
party failing to perform or to offer to
perform comports with standards of good
faith and fair dealing.

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 137

UCITA creates disincentives
for quality

By cost-reducing consequences of
shipping bad software

By helping publishers limit
presale competitive information

⌧Hiding terms limits
presale comparison
shopping
⌧Use restrictions kill
critical magazine reviews

By allowing publishers to discourage
competition

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 138

UCITA: Validates post-payment
disclosure of terms

Permits “pay first, see the contract terms
later” even for such key terms as
warranty disclaimers and remedy
limitations: UCITA defines “opportunity
to review” in such a way as to provide that
a customer who doesn’t see terms until
after he or she has paid and taken delivery
of the information is deemed to have an
opportunity to review those terms. Section
112(e)(3). There is no exception for terms
required to be conspicuous, so that a term
is “conspicuous” even when first disclosed
after payment or delivery. See Section
406 for conspicuousness requirement as
to warranty disclaimers.

This flies in the face of nearly a century of
jurisprudence on post-sale presentation of
disclaimers of warranties. (Finding the
disclaimers ineffective in industry after
industry).

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 139

UCITA: Validates post-payment
disclosure of terms

This makes comparison shopping (one of
the great potential benefits of on-line
shopping to consumers) impractical.
Delay of disclosure of terms until after
a customer is psychologically
committed to the deal is the approach
used in UCITA for all terms—even
important elements of the deal such as
warranty disclaimers, remedy
limitations, transfer restrictions,
prohibitions on criticism of the product,
and the key feature of a license—the
restrictions on the number of users and
the length of time that use is
authorized.

Post-payment disclosure also makes it
hard for journalists to gather
information about the best available
deals and present comparative

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 140

UCITA: Validates post-payment
disclosure of terms

UCITA contains no requirement that terms of the
contract be made available before payment is
accepted and delivery is made, even when it
would be easy to do so.

Instead, UCITA gives the licensor (or the seller of
a combination of goods and software) unfettered
discretion to decide to provide the customer with
the terms before or after the customer pays and
receives shipment. Section 112(e)(3).

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 141

UCITA: Probably eliminates
coverage of software by goods-

related consumer protection laws

Statutes like the California Song-Beverly Act and the
federal Magnuson-Moss Warranty Act apply
specifically to sales of goods.

Courts typically treat mass-market software
transactions as sales of goods. UCITA
recharacterizes these transactions as “licenses” of
“computer information.” Section 102(a)(40) and
(10). Licenses are intangibles, not goods, and
therefore goods-specific laws will no longer apply.

Note Fred Miller’s comment, in UCC Bulletin, that Mag-
Moss was never intended to apply to software.

Therefore, the supposed preservation of consumer
protection law in Section 105(c) is misleading.

UCITA should provide that consumer protection laws
that apply to sales of goods also apply to licenses of
software in the mass market.

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 142

UCITA: Right of return is
illusory

The right of return touted by UCITA’s sponsors
evaporates the moment the consumer double clicks
on the “I agree” screen. Section 209(b). Many
software companies have included this right of
return in the absence of UCITA, and they know that
a return right is rarely invoked by customers who
have already paid or taken delivery, and who are
anxious to get access to the product and must click
to do so.

Additionally, UCITA’s right of return disappears if the
licensee has any opportunity to review the license
before becoming obligated to pay. Section 209(b).

A genuine right of return would allow the consumer to
install the product and evaluate it for a limited but
reasonable time, with a right to return the product
either because of obvious defects or because of (in
the context of the perceived quality of the product)
the contract terms.

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 143

UCITA: ALI withdrew from
UCC 2B

The authors of a May 1998 ALI resolution
(Braucher and Linzer) wrote in their supporting
memo:

• “The Draft reflects a persistent bias
in favor of those who draft standard
forms, most commonly licensors. It
would validate practices that involve
post-purchase presentation of terms
in both business and consumer
transactions (using "shrink-wrap" and
"clickwrap"), undermining the
development of competition in
contingent terms, such as warranties
and remedies. It would also allow
imposition of terms outside the range
of reasonable expectations and permit
routine contractual restrictions on
uses of information traditionally
protected by federal intellectual
property law. A fundamental change
of approach is needed.”

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 144

UCITA: Fundamental conflict
with UDAP disclosure policies

Another problem with UCITA is that it
conflicts with the approach of statutes
prohibiting unfair and deceptive
practices. Many cases and regulations
apply these statutes so as to require
early disclosure of key elements of
transactions—early and prominent
disclosure of key terms is crucial to an
efficient marketplace based on
meaningful consumer choice.

By specifically authorizing post-payment
disclosure of terms, UCITA would have
one of two effects: misleading
producers into thinking that this
approach is legally protected, or
watering down anti- deception laws by
influencing interpretation of them to
permit delayed disclosure.

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 145

UCITA:Weakens Article 2 standard
for warranty by demonstration.

Permits a product to fail to fully conform to a sample,
model, or demonstration even when that sample,
model, or demonstration was part of the basis of the
bargain and created an express warranty: Under
Section 402(a)(3), the actual product need only
“reasonably conform" to the sample, model, or
demonstration

Eliminates some express warranties created by a
display or description of a portion of the information:
Under UCITA, a display or description of a portion of
information doesn’t create an express warranty if
the purpose was: “to illustrate the aesthetics,
market appeal, or the like, of informational content."
In other words, the licensor can show or describe
the information, but the information doesn't have to
fully live up to that display or description. Section
402(b)(2). No similar restriction is found in UCC
Article 2

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 146

UCITA: Current IP law

Copyright Act is federal law. Supercedes
state laws that try to govern copying or
distribution of original works.

Copyright Act balances rights of creators /
publishers and buyers.

⌧First sale doctrine
» Buyer of a copy may lend, resell,

destroy, or mark up her copy. The
seller’s rights to that particular
copy are exhausted in the sale.

⌧Fair use rights: limited copying
allowed for

» reviews, parody
» classroom use
» reverse engineering

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 147

UCITA: End of Fair Use -- Allows
unreasonable use restrictions

102(a) (19) “Contractual use term”
means an enforceable term that defines
or limits the use, disclosure of, or access
to licensed information or informational
rights, including a term that defines the
scope of a license.

307(b) If a license expressly limits use of
the information or informational rights,
use in any other manner is a breach of
contract.

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 148

UCITA: Allows restrictions on
public discussion of product flaws.

UCITA explicitly validates use terms,
explicitly mentioning nondisclosure
restrictions.

We already see software licenses that
purport to ban publication of critical
articles; at least one trade journal has
stated that it decided not to risk being
sued under these terms.

Even if the courts eventually ruled that
such restrictions on mass market
software are against public policy, this
will take years to settle through
repeated litigation and the effect in the
meantime will be to chill public
comment on bad products.

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 149

UCITA creates disincentives
for quality

• By cost-reducing consequences of
shipping bad software

• By helping publishers limit presale
competitive information

• By allowing publishers to
discourage competition

⌧Eliminate competition
from used software
⌧Ban mass-market reverse
engineering except for
DMCA exceptions
⌧Limit competitive use of
provided information

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 150

UCITA: Validates transfer
restrictions in the mass market

UCITA Section 503(2) permits a license to prohibit
transfer of software or other information, even
if the licensee keeps no copy.

⌧No more donations to libraries,
churches, other charities

⌧No more gifts of used software to
friends and family

⌧No more used software market

⌧Consumer who wants to give away or
sell a used computer with the operating
system can be prohibited from doing so.

This is an example of a contract term that will
be valid even though it conflicts with
normal consumer expectations (UCITA
has no reasonable expectations test for
contract terms.)

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 151

UCITA creates other
problems too

Electronic commerce rules are unfair

⌧Message delivery

⌧Notice

⌧Writing requirements

⌧Security of electronic signatures

⌧“Self-help” disabling of customers’
software and systems

Choice of law, forum are wide open to
the seller

Compulsory arbitration fits in the
framework.

MANY other problems for small
business.

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 152

UCITA: Makes messages effective
under unreasonable circumstances

• Information is received (by definition)
(102(a)(52)(B)) when it hits the
consumer’s ISP.

⌧If the message is lost, corrupted or filtered
between receipt at ISP and failed delivery
to consumer’s computer, too bad.

• Information is received (by definition) even
though it arrived at a system from which a
customer cannot access it, as long as the
sender does not know that the customer
cannot access the information. Section
102(a)(52)(B)(ii)(II).

• Message is effective even if alleged
recipient is not aware of receipt. (215)

⌧Many consumers have e-mail accounts that
they do not check regularly.

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 153

UCITA: Creates severe risks for consumers
who filter out incoming junk e-mail

Many consumers use filters to screen out
spam, such as advertisements of
pornography. A reasonably configured
filter may delete a message because of
its originating ISP, or because of key
phrases in the heading, even though
that particular message is a legal
notice.

Section 102(a)(52) makes it clear that
these messages have been received
and so are effective even though the
consumer will never have seen them.

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 154

UCITA: Choice of law and forum in
mass-market transactions

Allows vendor to choose any US forum
(and possibly a foreign one) for its
convenience. Will deprive many
consumers of a forum they can afford
by requiring suits to be brought in a
remote location

The boilerplate restriction is enforceable
even if the specified forum is unjust or
(exclusive or) unreasonable. Section
110.

Comment 3 provides that a choice of
forum “is not invalid simply because it
adversely effects one party, even in
cases where bargaining power is
unequal.”

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 155

UCITA: Compulsory
consumer arbitration

Not a UCITA case, but applies UCITA reasoning

§ Hill v. Gateway 2000, 105 F.3d 1147 (7th

Cir. 1997).
§ Computers (not software, just goods).
§ Broadly approves enforcement of terms

presented post-sale.
§ Allegations of consumer fraud,

racketeering
§ Post-sale contract term (enforced)

required arbitration of all disputes,
under expensive (ICC not AAA)
circumstances.
§ Why would this not apply to arbitration

of products liability, if it applies to fraud?

§ Boyd v. Homes of Legend, 981 F. Supp.
1423 (M.D. Ala. 1997) applies Gateway
reasoning to Mobile Homes

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 156

UCITA: Requires balancing test
when a contract term violates

fundamental public policy:

• UCITA limits the common law discretion of a court
to refuse to enforce a contract or a portion of a
contract when the contract violates public policy.
This doctrine is limited in UCITA to cases where the
court finds that the public policy is “fundamental,”
and then only “to the extent that the interest in
enforcement is clearly outweighed by a public policy
against enforcement of the terms.” Section 105(b).

• If a term violates a fundamental public policy, should
the court also have to engage in a process of
balancing the interest in enforcing that term against
the public policy? The Restatement (Second) of
Contracts, in Section 178, calls for balancing, but
does not require that the public policy be
“fundamental.” A further objection to this provision
is that it will require decades of litigation to find out
what sort of license terms are unenforceable.

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 157

UCITA: References

Kaner & Pels, Bad Software: What To Do
When Software Fails, John Wiley &
Sons, 1998.

www.badsoftware.com (mainly my stuff)

www.2bguide.com (primarily a
publisher’s-side site, lots of docs from
both sides) (but misses some
interesting customer-side docs)

www.law.upenn.edu/bll/ulc/ulc.htm

www.nccusl.org

www.infoworld.com (Ed Foster, Gripeline)

Stay tuned for www.ucita.com.

Copyright (c) 1997-1999 Cem Kaner. All Rights Reserved. 158

WHY SOFTWARE QUALITY PROFESSIONALS

SHOULD ACTIVELY OPPOSE THE

UNIFORM COMPUTER INFORMATION TRANSACTIONS ACT

Copyright © 1999, Cem Kaner

Draft, May 15, 1999

The Uniform Computer Information Transactions Act (UCITA) is a proposed new law
that will govern all transactions in software, including contracts for sale, licensing,
documentation, maintenance and support of computer software. It will also govern
contracts involving electronic information (movies, music, text that you download or
buy on a CD) and, at the vendor's option, can govern sales of computers and some
other devices that are sold in conjunction with software.

Until recently, UCITA was proposed as an amendment to the Uniform Commercial
Code, and was called Article 2B. However, the American Law Institute (ALI), one of
the two organizations that must approve all changes to the UCC, recently withdrew
from the Article 2B project. The other organization, the National Conference of
Commissioners on Uniform State Laws (NCCUSL), decided to rename the bill to the
Uniform Computer Information Transactions Act and go forward with it.

===

SIDEBAR

The American Law Institute has declined to say why it
withdrew from the Article 2B project. However, their
withdrawal was not a surprise.

In its May 1998 Annual Meeting, the ALI passed the
following resolution: “The current draft of proposed UCC
Article 2B has not reached an acceptable balance in its
provisions concerning assent to standard form records
and should be returned to the Drafting Committee for
fundamental revision of the several related sections
governing assent.”

The authors of the ALI resolution (Braucher and Linzer)
wrote in their supporting memo that “The Draft reflects a
persistent bias in favor of those who draft standard
forms, most commonly licensors." (Companies that
publish or sell software are licensors under 2B.)

Additionally, in December 1998, an ALI Council ad hoc
committee formed to review Article 2B submitted a
memorandum to the full Council stating that it was
unlikely that an acceptable draft could be prepared in
time for the ALI Annual Meeting in May 1999. The
memorandum raised questions about whether the project

Copyright (c) 1997-1999 Cem Kaner. All Rights Reserved. 159

is premature in light of rapidly changing technology
and business practices. It also noted the lack of
consensus about the need for Article 2B and the
opposition to it from many affected interests. The
memorandum described the drafting of key provisions
as “opaque” and “difficult to comprehend.”

For more details, see Braucher, 1999.

==

NCCUSL will vote on UCITA at its annual meeting, July 23-30, 1999 in
Denver. There will be a final UCITA drafting committee meeting on
July 22, 1999 in Denver. For details on the meeting, contact me at
kaner@kaner.com or check www.nccusl.org.

If you read a copy of this article before July 22, 1999, I urge you to
write a letter to the members of NCCUSL from your State, asking
them to oppose UCITA. If you read it in the July 20-30 timeframe,
you can send a letter to me and I will see that it reaches the NCCUSL
members from your state. After July 30, send opposition letters to
your state representatives.

Why We Should Actively Oppose UCITA
The simple and short answer is that UCITA will dramatically reduce a software
publisher's external failure costs for defective software. It does this brilliantly, in a
wide range of ways, reducing the costs of customer support, of lost sales due to
competition, and of legal action.

As a result, UCITA changes the economics of software publishing.

When we reduce the risks (to the publisher) of selling defective software, we
reduce the incentive to spend the money and time to prevent, search for, and fix
defects. In turn, this tells me that we (the American software industry):

¤ will ship worse software.

¤ will invest less money in technology and process improvement needed to
produce better software.

1. will make the American industry more vulnerable to foreign
competition. Les Hatton, a well known author on software quality (see,
for example Safer C), just finished his masters degree in law. He advises
me (personal communication, May 13, 1999) that the trend in Europe is
to hold software companies more accountable for defects and to provid
greater protection for European consumers and small businesses. I
believe that this will provide a greater incentive for companies that
primarily trade in Europe to improve their products, rather than ship
them with obvious defects. Eventually, international competition will
take care of this divergence of standards. But as with the car industry,
that eventuality might be devastating for some parts of the American
economy (us — software workers — for example).

Copyright (c) 1997-1999 Cem Kaner. All Rights Reserved. 160

What We Can Do
For the last three and a half years, I've spent about one-third of my time, unpaid,
explaining software quality issues to legislative drafting and regulatory bodies. I've
provided input to drafting committees for Uniform Laws (Article 2B/UCITA, Article
2—UCC law of sales, and the Uniform Electronic Transactions Act), to people
drafting laws and treaties to govern international electronic commerce (a State
Department study group, and members of the American Bar Association), to the
Federal Trade Commission, and to various consumer protection groups. Several
other software quality advocates have shared in this work, including Watts
Humphrey, James Bach, Doug Hoffman, Sharon Marsh Roberts, Melora Svoboda,
Ken Pugh, Brian Lawrence, and Bob Johnson. Software-related professional
societies, including the Association for Computing Machinery, the Institute for
Electrical and Electronics Engineers, the Independent Computer Consultants
Association, and the software-test-discuss mailing list (but not ASQ) have
submitted letters criticizing UCITA/Article 2B.

Here are a few things that I've learned.

First, UCITA is just one of several legislative proposals involving software quality
that will go to the state and federal governments over the next few years. It is
currently the most important. I expect to also see proposals to:

¤ reduce legal liability of vendors and users of Y2K-defective software;

¤ license software testers, developers, and consultants;

¤ increase liability for defects in consumer or mass-market software (various
proposed lemon laws);

¤ limit competition, via changes to the Copyright Act to (for example) ban or
restrict reverse engineering of software products;

¤ increase competition, via changes to the antitrust laws (if Microsoft prevails in
its antitrust case);

¤ increase / decrease / regulate / deregulate privacy protection on the Net;

¤ establish standards for reliability of internet services;

¤ establish standards for electronic signatures and other technical aspects of
electronic commerce.

There will probably be plenty of other proposals.

Second, we are credible sources of information on these types of issues. We are
industry insiders. We aren't embittered whistleblowers—we want the industry to
succeed. We also have special insight—we know how products fail, we understand
the difficulties of making perfect products and we also know how our defects
affect customers.

Our input is valuable because most of the people who will have to evaluate these
proposed laws are lawyers, and most of them are unsophisticated about software.
Many of the lawyers working on committees writing legislation to govern
electronic commerce didn't even have e-mail accounts when they started work.

Copyright (c) 1997-1999 Cem Kaner. All Rights Reserved. 161

Many of the lawyers who will vote on these proposed laws still don't have e-mail,
let alone more sophisticated e-commerce experience.

Even the ones with some experience as software users get a huge proportion of
their education about software development and marketing from other lawyers
who represent software publishers. This bias is pervasive. Legislative drafting
committees dealing with software are visited or advised by many paid lobbyists fo
software publishers and by very few, usually unpaid, consumer advocates (almost
none of whom have software-related backgrounds). Additionally, courses and
industry seminars on software law are typically taught by lawyers who represent
software publishers / consultants. And speakers at conferences on software law
are typically lawyers who represent publishers. There are hundreds of lawyers
working for software sellers, but I can count the number of lawyers who publicly
advocate for software quality on one hand.

If legal drafting bodies and legislatures are going to deal sensibly with the
proposed laws to govern software quality, they need input from people like us.

Third, we can provide input—we are welcome to provide input—as individuals and
as professional societies. People are hungry for our input. Non-lawyers can have a
significant impact on laws by addressing technological issues and explaining the
consequences of technology-related decisions. Software developers and testers
haven't been all that well received in the UCITA/Article 2B drafting committee
meetings, but they have had big effects elsewhere. For example, Bob Johnson is
responsible for many significant improvements to the Uniform Electronic
Transactions Act. And, even in the UCITA process, our comments have been
effective in slowing the process down and convincing decision-makers to consider
UCITA more carefully. ALI would probably have approved 2B/UCITA if it wasn't for
our many comments.

In my experience, regulatory agencies, such as the Federal Trade Commission, are
even more interested in our input than legislative drafting groups.

With particular reference to UCITA, we can do the following:

¤ Write letters to the head of NCCUSL, Gene Lebrun,
<GLebrun@LYNNJACKSON.COM>. (Please send me a copy so that I can
distribute them to the rest of NCCUSL at the annual meeting in July, 1999. It i
unlikely that a letter to Gene will go further, and he strongly supports UCITA.)

¤ Write letters to the NCCUSL members in your state (contact me,
kaner@kaner.com, for their names, etc. or check my website,
www.badsoftware.com).

¤ Write letters to your state legislators and state governor. (This is a state law
issue; members of Congress don't count.)

Write letters describing defects that were badly handled and examples of deceptiv
or dishonest or unfair conduct by software publishers to Adam Cohn
<ACOHN@FTC.GOV> of the Federal Trade Commission. Adam will of course be
interested in fully detailed (names, dates, etc.) letters. You can also send him a
letter that deliberately disguises the people/companies/products, that is sent to
him only to educate him about the types of practices in the industry. Tell him

Copyright (c) 1997-1999 Cem Kaner. All Rights Reserved. 162

in these letters, that this is what you are doing and (if you want) tell him that
suggested that he would find these educational-purposes-only letters useful.
These are valuable because the FTC is in an awkward position regarding
UCITA. Federal agencies rarely comment on state law, but the authors of
UCITA are making claims about the status and content of consumer
protection law in the USA, and the FTC has significant expertise in this area.
The FTC wrote one long letter commenting on Article 2B (see
www.ftc.gov/be/v980032.htm) but has to decide whether to write another a
which issues are important to address.

¤ Write letters and op-ed articles for your local newspaper. I can help you a bit
with this.

¤ Encourage your professional societies (such as ASQ) to take a stand and to
write some letters of their own.

==

SOME ORGANIZATIONS THAT OPPOSE UCITA

¤ fifty intellectual property law professors
(www.2BGuide.com/docs/1198ml.html)

¤ American Association of Law Libraries
(www.arl.org/info/letters/libltr.html and
www.arl.org/info/letters/Wright_ALI_letter.html)

¤ American Library Association
(www.arl.org/info/letters/libltr.html and
www.arl.org/info/letters/Wright_ALI_letter.html)

¤ American Society of Media Photographers
(www.nwu.org/pic/uccasmp.htm)

¤ Association for Computing Machinery
(www.acm.org/usacm/copyright/usacm-ucc2b-1098.html)

¤ Association of Research Libraries
(www.arl.org/info/letters/libltr.html and
www.arl.org/info/letters/Wright_ALI_letter.html)

¤ Consumer Federation of America (www.cptech.org/ucc/sign-
on.html)

¤ Consumer Project on Technology (Ralph Nader)
(www.cptech.org/ucc/sign-on.html)

¤ Consumers Union (www.2BGuide.com/docs/cu1098.html)

¤ Independent Computer Consultants Association (unpublished)

¤ Institute for Electrical & Electronics Engineers (IEEE) submitted
specific criticisms of 2B but not final opposition. See
www.ieee.org/usab/FORUM/POLICY/98feb23.html and
www.ieee.org/usab/FORUM/POLICY/98oct09.html.

¤ Magazine Publishers of America (www.2BGuide.com/docs/v9-
98.pdf)

Copyright (c) 1997-1999 Cem Kaner. All Rights Reserved. 163

¤ Motion Picture Association of America
(www.2BGuide.com/docs/v9-98.pdf and
www.2BGuide.com/docs/mpaa1198.html)

¤ National Association of Broadcasters
(www.2BGuide.com/docs/v9-98.pdf)

¤ National Cable Television Association
(www.2BGuide.com/docs/v9-98.pdf)

¤ National Consumer League (www.cptech.org/ucc/sign-on.html)

¤ National Music Publishers Association (unpublished)

¤ National Writers Union (www.nwu.org/pic/ucc1009a.htm)

¤ Newspaper Association of America (www.2BGuide.com/docs/v9-
98.pdf)

¤ Recording Industry Association of America
(www.2BGuide.com/docs/v9-98.pdf and
www.2BGuide.com/docs/riaa1098.html)

¤ Sacramento Area Quality Association (unpublished)

¤ Society for Information Management
(www.2BGuide.com/docs/simltr1098.html)

¤ software-test-discuss (this is the Net’s largest e-mail discussion
forum on software quality control)

¤ Special Libraries Association (www.arl.org/info/letters/libltr.html
and www.arl.org/info/letters/Wright_ALI_letter.html)

¤ United States Public Interest Research Group
(www.cptech.org/ucc/sign-on.html).

Most of these letters are brief. After consultation with
some other consumer advocates, I submitted a detailed
letter with a section-by-section call for consumer-side
revisions (www.badsoftware.com/kanerncc.htm). The
Society for Information Management’s letter details the
concerns of large software customers
(www.2BGuide.com/docs/simltr1098.html).

==

How UCITA Drives Down Failure Costs
The total quality cost for a product is the sum of:

¤ prevention costs (cost of preventing defects) plus

¤ appraisal costs (such as cost of testing)

¤ plus internal failure costs (such as cost of fixing defects)

plus external failure costs (costs caused by the defect after the product is release
to customers).

Copyright (c) 1997-1999 Cem Kaner. All Rights Reserved. 164

The external failure costs in this model are the costs of the seller or manufacturer
not the costs of the customer. This model ignores the customer's costs (Kaner,
1996).

Normally, the best way to reduce external failure costs is to improve the product,
especially by preventing defects or by finding them early in development.
However, a company can reduce its external failure costs by handling them (e.g.
customer complaints or lawsuits) more efficiently.

UCITA provides another approach—reduce external failure costs directly.

I classify external failure costs into three categories:

¤ Customer support costs

¤ Legal costs.

¤ Lost sales (especially sales lost to competitors).

Note that the publisher doesn't reduce its customer's losses by reducing these
costs. In many cases, the publisher will save money by increasing its customer's
losses under UCITA.

Customer Support Costs
Here are some of the ways that UCITA lets publishers reduce their technical
support costs (without improving the product). Citations are to the July, 1999
draft of UCITA:

¤ The publisher gets to charge customers for support, even for known bugs. For
example, if you buy a program for $50, the publisher might charge you $3 per
minute for a support call. Suppose that you run into a (known) defect, call the
publisher, talk for 30 minutes ($90), realize that you're not getting anywhere,
and demand a refund. The publisher says OK, you send back the product (at
your expense), the publisher sends you $50 and keeps your $90. It would have
been much cheaper to throw the defective product away. (Section 803(a)(1)
803(c).)

¤ When the buyer rejects a defective product because of obvious defects, the
publisher can demand "a full and final statement in a record of all defects on
which the refusing party proposes to rely." (Section 702(c)(2).) If there's a bu
that you don't find and report in response to this, you can't complain about it
when it bites you later. (But not even the publisher's testing staff can find all
the defects, so why should we expect a customer to be able to create a full an
final statement of them?)

¤ A publisher's contract to support its software will not require it to fix all
defects. (Section 612(a)(1)(B).)

¤ In a contract dispute, the publisher can sometimes use “self-help” to shut dow
the operation of the program without court approval. (Section 816.)

The publisher will have the same or (probably) greater power to restrict customer
right to maintain the publisher's software or to contract for 3rd party support for
the software. . (This is achieved via contractual use restrictions on modification o
3rd party use of the product, see Section 102(a)(20) and 701(a).)

Copyright (c) 1997-1999 Cem Kaner. All Rights Reserved. 165

Legal Costs
Here are some of the ways that UCITA lets the publisher reduce its risk of legal
liability for defective products, without making the product less defective.

¤ All of the terms of the contract except the price can be hidden from the
customer until after the sale. By "hidden", I mean that the customer has no wa
to obtain the terms until after paying for the product. (Section 112, 210-213.

¤ The implied warranty of merchantability (which provides that products will be
reasonably fit for ordinary use) will be trivially easy to disclaim (to refuse to
provide), and the disclaimer can be hidden from the customer until after the
sale. (Sections 112, 210-212)

¤ By defining software transactions as licenses (which are intangibles) instead of
sales of copies of the software (Section 102(a)(42)), UCITA takes these
transactions out of the scope of the Magnuson-Moss Warranty Improvement
Act and of state consumer protection statutes that are based on sales of goo
go away. Consumers thereby lose warranty rights.

¤ It is much harder under UCITA than under current law (UCC Article 2) to prove
that a warranty was created by a demonstration of a product. (Section 402(a)
and 402(b)(2)). A publisher can more easily get away with making misleading
product demonstrations at trade shows.

¤ Business customers lose their right to reject a product for obvious defects.
(Section 704(b) restricts the centuries old "perfect tender rule" to mass mark
contracts, repealing it for the rest.)

¤ Except for mass-market software in the first day or so of use, you cannot canc
the contract (and return the software) unless there is a "material breach" (a
very serious defect or group of defects). (Section 601, 704(a), 802(a).) The
definition of material breach (Section 701) is more seller-friendly than the
current definition, as laid out in the Restatement of Contracts. And finally, the
publisher can specify that you cannot cancel the contract even if there is a
material breach. (Section 803(a)(1).)

¤ Even if it is proved that the product is defective and the seller has materially
breached the contract, the seller is liable for almost no remedies (payments to
the customer). For example, the publisher doesn't have to reimburse callers fo
incidental expenses (such as the cost of phone calls to the publisher or of
returning the product) or consequential losses (such as the cost of restoring
lost data) caused by the product's defect. (Section 803(d).) UCITA eliminates
principle of the "minimum adequate remedy" developed in UCC Article 2 (the
current law of sales, which governs contracts for packaged software today --
See Reporter's Note 6 to Section 803: "This Act does not give a court the right
to invalidate a remedy limitation because the court believes that the imitation
does not afford a “minimum adequate remedy” for the aggrieved party.").

¤ The publisher can easily set up a waiver of liability (you "agree" to not sue the
publisher for defects that you have complained about) by including the waiver
in the click-wrapped "license" that comes with a bug-fix upgrade that the
publisher sends you. (Section 702(a).)

Copyright (c) 1997-1999 Cem Kaner. All Rights Reserved. 166

¤ The contract can specify what state or country's law will govern this
transaction and what court (in what country, state, city) you have to go to in
order to bring a suit against the publisher. Forget about bringing a case in sma
claims court against a publisher who sells you a defective consumer product.
Unless the software is very expensive, or the suit is brought as a class action,
you probably won't be able to afford to bring such a lawsuit because of the
added travel and legal research expenses. Additionally, the publisher will
probably have written into the contract the state whose laws and courts are
most favorable to it. (Sections 109, 110, and many debates and resolutions
during the 2B drafting meetings.)

Lost Sales (Especially Sales Lost to Competitors)
¤ UCITA will let companies prohibit publication of criticisms of their product. For

example, with VirusScan, you get the restrictions, “The customer shall not
disclose the results of any benchmark test to any third party without McAfee's
prior written approval” and “The customer will not publish reviews of the
product without prior consent from McAfee." These are restrictions on
disclosure. Section 102(b)(20) defines a “contractual use restriction” as "an
enforceable restriction created by contract, which restriction concerns the use
or disclosure of, or access to licensed information or informational rights,
including a limitation on scope or manner of use." Therefore, on their face,
these terms are enforceable. Section 105 provides some limitations on these
clauses. A clause can be thrown out if federal law specifies that it can be
thrown out or if the customer can jump through a remarkable set of litigation
hoops to prove that the clause violates a fundamental public policy or if
(Section 111) a judge rules that the clause is unconscionable. These decisions
are made on a case by case basis, so it will probably take many years, many
trials, and many appeals before we have a clear understanding of which
restrictions are enforceable and which are not. In the meantime, publishers of
defective products will be able to intimidate people who can't afford to be sue
by quoting their nondisclosure terms in their contracts and threatening to sue
if the person publishes a critical article. (Such threats have been made.)

¤ UCITA will let publishers ban reverse engineering. This is just another
contractual use restriction (102(a)(20)). See the discussion of these in the po
above. There are many legitimate reasons for doing reverse engineering, such
as figuring out how to make one product compatible with another, figuring out
how to work around the defects in a product, and figuring out how to fix the
product's defects. (See Kaner, 1998, for discussion and a list of other example

¤ Finally, by making it easy for publishers to hide the terms of their contracts
until after the sale is made, UCITA makes it hard for customers to compare
several types of terms. For example, when you buy a program, do you know
whether that publisher's warranty is better than its competitors'? What does
the publisher charge for support, compared to its competitors? What are your
rights to arrange for 3rd party maintenance of the product? Can you write
critical reviews of it? These terms might all affect your buying decision, but no
if you can't find them until after you've paid for the product.

Copyright (c) 1997-1999 Cem Kaner. All Rights Reserved. 167

In Closing
I've focused this paper on UCITA's impact on software quality, but UCITA has
many other serious problems involving electronic commerce and intellectual
property rights. If you want details, or if you can offer some help, please write me
(kaner@kaner.com).

References
Braucher, J. (1999) "Why UCITA, Like UCC Article 2B, is Premature and Unsound"
forthcoming in the UCC Bulletin, July 1999. Available at
http://www.2BGuide.com/docs/0499jb.html.

Kaner, C. (1996), "Quality cost analysis: Benefits and risks", Software QA, Volume 3,
#1, p. 23, www.kaner.com/qualcost.htm.

Kaner, C.(1998), "Article 2B and reverse engineering", UCC Bulletin, November, p. 1,
ww.badsoftware.com/reversea.htm. See also "The problem of reverse engineering
Software QA, www.badsoftware.com/reveng.htm.

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 168

Notes

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 169

Law of Software Quality

Section 10.

Misrepresentation

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 170

Misrepresentation

⌧ False representation by the seller

⌧ of a material (important) fact

⌧ that the plaintiff justifiably relies on

⌧ and as a result, the plaintiff is damaged.
Misrepresentation can be:

⌧ Fraudulent

⌧ Negligent

⌧ Innocent
A misrepresentation is fraudulent if the maker

⌧ knows or believes that the matter is not as he
represents it to be, or

⌧ does not have the confidence in the accuracy of his
representation that he states or implies, or

⌧ knows that he does not have the basis for his
representation that he states or implies

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 171

Misrepresentation

 Post-sale misrepresentation

Post-sale fraud is actionable if it causes a
person to forego or refrain from asserting
an existing right or to change position in
some other way.

Mention this to support staff who think
they’re supposed to lie if necessary to
keep a customer from returning a
product.

Ritchie Enterprises v. Honeywell Bull, Inc.
(1990)

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 172

Misrepresentation

Negligent Misrepresentation

⌧The duty is to exercise the care or
competence of a reasonable person who is
communicating information.

⌧Not all misrepresenters will be held liable.
Many states require a special relationship
between the victim and misrepresenter, such
as a position of trust.

⌧States vary in the degree to which they
allow a negligent misrespresentation suit, in
the face of an integration clause and no
misrepresentation in the body of the
contract.

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 173

Misrepresentation

Negligent Misrepresentation

Burroughs Corporation v. Hall Affiliates, 423 So. 2d 1348 (Supreme
Court of Alabama, 1982). Hall imports artificial flowers, and bought a
Burroughs B80-40 computer in 1977 to handle its accounting and
inventory functions. The system didn’t work and Hall sued claiming that
Burrough’s salespeoples’ representations about the system were
fraudulent. The court listed 4 representations:

1. the machine would do inventory and accounting simultaneously
2. the machine was capable of multiprogramming
3. the machine was capable of operating a terminal display unit in

a data communications environment
4. the machine and all of its component parts were new

The jury found that Burroughs had committed fraud and awarded
$500,000. Burroughs challenged the finding to the Supreme Court of
Alabama. The Court upheld the verdict, explaining that in Alabama, all
that was required for a finding of fraud was

(a) a false representation by the seller
(b) the representation must concern a material existing fact
(c) the plaintiff must rely upon the false representation
(d) the plaintiff must be damaged as a proximate result.

Intent is not part of the basic definition of fraud in Alabama. What we
call negligent misrepresentation in California is fraud in Alabama. In
Alabama, the proof of intent is still relevant, in order to make a case for
punitive damages.

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 174

Publisher Liability

Winter v. G.P. Putnam’s Sons, 938 F.2d 1033,
(9th Circuit) 1991. Winter became seriously ill
from picking and eating mushrooms after relying
on The Encyclopedia of Mushrooms, published by
Putnam. Putnam did not verify the material in the
book and did not intentionally include the error.

⌧ Putnam was not liable for errors in the book.

⌧ Noted that Jeppesen cases have consistently held
publisher liable for information error when
information published to be used as a tool.

⌧ However, software publisher might be liable for
program that does not work as intended.

ALM v. Van Nostrand Reinhold 480 NE.2d 1263,
1985. The Making of Tools. Plaintiff used it, and a
tool shattered, causing injury. VNR not liable, but
author of the book might be.

Copyright (c) 1997-1999 Cem Kaner. All Rights Reserved. 175

Cem Kaner, Ph.D., J.D. P.O. Box 1200
Law Office of Cem Kaner Santa Clara, CA 95052
kaner@kaner.com 408-244-7000

Liability for Defective Content

Copyright © Cem Kaner, 1996. All Rights Reserved.

With all the storage space on CD-ROMs, many products come with loads of added content, such as
books, articles, maps, audio clips, video clips, and clip art. Much of this material is bought cheaply and then
copied onto the disk without any testing beyond verification that it installs correctly.

What happens if information provided on these disks is incorrect? Can a software publisher be sued for
informational errors? From a legal liability point of view, should you insist on testing all of the factual
material in the product?

The short answer is, No. The longer answer is, Well, not usually but there are some important
exceptions. I’ve heard people overgeneralize the general rule. It can be a mistake to conclude that publishers
never have liability for informational errors. In this brief article, I want to familiarize you with the general
rule and then point out some of the risks.

The General Rule: No Liability
In the case of Alm v. Van Nostrand Reinhold1, Alm bought a how-to book, The Making of Tools. He

was injured when a tool shattered while he was (allegedly) following the book’s instructions for making that
tool. He sued the publisher and the author. The Court refused to allow the case to proceed against the
publisher. It cited a long series of decisions that newspapers and magazines could publish material written
by a third party without fear of being sued for that writer’s mistakes. The Court concluded,

“Plaintiff’s theory, if adopted, would place upon publishers the duty of scrutinizing and even
testing all procedures contained in any of their publications.”2

Test all the procedures? Oh No! No! Not that!

There are serious problems with requiring a publisher to check all of the facts in books or articles
submitted to it. For example3, there is the First Amendment problem. The First Amendment to the
Constitution of the United States prohibits laws “abridging the freedom of speech, or of the press.” How
long would it delay the news if the newspaper had to independently check every fact in every article? How
much would it add to the cost of newspapers and books?

1 North Eastern Reporter, Second Series, Volume 480, p. 1263 (Appellate Court of Illinois, 1985)
2 Alm, p. 1267.
3 The First Amendment problem isn’t the only problem. The Alm v. Van Nostrand Reinhold Court was more

concerned about the potentially huge but unpredictable size of the class of potential plaintiffs. This is an important
problem, but too specialized for this paper. If you’re intrigued by it, I recommend Jay Feinman’s book, Economic
Negligence, Little Brown, 1995, Section 1.3.2, “The threat of indeterminate liability.”

Copyright (c) 1997-1999 Cem Kaner. All Rights Reserved. 176

How much would it interfere with the publication of unpopular ideas? How much harder
would it be for a new writer or a controversial writer to get published? Could a political or
religious group harass and eventually bankrupt a publisher with mistake-alleging lawsuits?
In the face of such considerations, American courts have consistently held that a publisher is
not liable for errors – not even for errors that cause personal injuries or deaths – that were
made by an independent author.

The case of Winter v. G.P. Putnam’s Sons1 provides a second instructive example. G.P.
Putnam’s Sons bought 10,000 copies of a book that was originally written and published in
Britain. Putnam distributed the book in the United States after putting its label on the book,
plus some material on the flyleaf that said that the book contained “strongly practical, wide-
ranging reference sections” and that the book’s reader would be able to identify and classify
particular mushrooms “at a glance.” Winter and a friend picked and ate mushrooms, relying
on the Encyclopedia to distinguish safe from unsafe. Unfortunately, one of the mushrooms
they ate was the amanita phalloides (a.k.a. Death Cap). They became very ill, required liver
transplants, and incurred about $400,000 in medical expenses. They sued.

The Court stated that ideas and expression are “governed by copyright laws; the laws of
libel, to the extent consistent with the First Amendment; and the laws of misrepresentation,
negligent misrepresentation, negligence, and mistake.”2

After considering various arguments for imposing liability, the Court stated that
“Guided by the First Amendment and the values embodied therein . . . we conclude that the
defendants have no duty to investigate the accuracy of the contents of the books it publishes.
A publisher may of course assume such a burden, but there there is nothing inherent in the
role of publisher . . . to suggest that such a duty should be imposed.”3

Exceptions
Here are several important exceptions to keep in mind:
〈 your company might also be the author
〈 your content might be about your own product
〈 the content might be defamatory
〈 your company might have created a warranty of accuracy or safety
〈 your company might have a special relationship with the reader or user of the

content
〈 your content might be intended to be the sole source of information available to the

user, and errors expose the user to great risk.

Each of these issues deserves an article much longer than this one (and you may see
some of them in this magazine in the future).

1 Federal Reporter, Second Series, Volume 938, p. 1033 (United States Court of Appeals, 9 th

Circuit, 1991). Some of the details of my description of this case are from Brett Lee Myers’ article,
“Read at your own risk: Publisher liability for defective how-to books”, Arkansas Law Review,
Volume 45, p. 699, 1992.

2 Winter, p. 1036.
3 Winter, p. 1036-37.

Copyright (c) 1997-1999 Cem Kaner. All Rights Reserved. 177

Author Liability

In Alm v. Van Nostrand Reinhold, the judge threw out the case against Van Nostrand, but let it
go forward against the book’s author. The same thing happened in Jones v. J.B. Lippincott Co.1 In
Birmingham v. Fodor’s Travel Publications, Inc.,2 the Court said “No jurisdiction has held a
publisher liable in negligence for personal injury suffered in reliance upon information contained
in the publication unless the publisher authored or guaranteed the information.”3

“The balance might well come out differently, however, if the publisher contributed some of
the content of the book. The burden of determining whether the content was accurate”4 would be
more reasonable to assign to a publisher that writes what it publishes.

This doesn’t mean that your company will be liable for every mistake (or even most of them).
The rules that govern author liability are complex.

But the point to keep in mind is that your legal duty to test content for accuracy is greater if
you create it than if you buy it from someone else.

Of course, your customer satisfaction risks are probably the same in both cases – there is
more to conducting honest and honorable business than meeting the minimum requirements of the
law.

Your Own Product

Statements of fact about your own product can be taken as warranties that the product works
as you’ve described it. See my article, “Liability for Defective Documentation” in Volume 2, #3 of
Software QA.

Defamation

People and businesses can sue over false statements that damage their reputation. Laws of
defamation (libel, slander, etc.) trade off free speech rights against peoples’ needs to prevent the
spreading of damaging lies about them. These are complex laws, especially complex if you sell the
product in several countries.

If you think that some of the content your company is publishing might be defamatory, talk to
your company’s lawyer.

Warranty of Safety or Accuracy

If you promise that your material is safe or accurate, and if it is to your commercial advantage
if people rely on your material, and if you invite people to rely on it, then it would be wise to be
right. The classic case is Hanberry v. Hearst Corp.5 The plaintiff bought shoes that bore the Good
Housekeeping Seal of Approval and was injured. She sued Hearst (Good Housekeeping) alleging
that the shoes were dangerously slippery and that Hearst had guaranteed the shoes when it
published its approval of them.

1 Federal Supplement, Volume 694, p. 1216 (United States District Court, District of Maryland, 1988).

The plaintiff suffered an injury from treating herself after consulting the Textbook for Medical and Surgical
Nursing.

2 Pacific Reporter, Second Series, Volume 833, p. 70 (Supreme Court of Hawaii, 1992).
3 Jones, p. 75.
4 Lewin v. McCreight, Federal Supplement, Volume 655, p. 282, 284 (United States District Court,

Eastern District of Michigan, 1987).
5 California Appellate Reports, Second Series, Volume 276, p. 680 (California Court of Appeal, 1969).

Copyright (c) 1997-1999 Cem Kaner. All Rights Reserved. 178

Courts are cautious to avoid extending warranties beyond those intended by the publisher. For
example, in Yanase v. Automobile Club of Southern California, the Court read a AAA Tourbook as
rating the cleanliness and comfort of a motel, but not the safety of the motel’s neighborhood.1 And
in First Equity v. Standard & Poor’s Corp.2, the Court carefully noted Standard & Poor’s caution
that it was compiling information from third parties and could not guarantee accuracy.

How does this apply to software? Software publishers sometimes make exaggerated claims,
and these might result in a duty to test all of the content on the disk. Here’s a purely hypothetical
example, suggested to me by a colleague. Several programs on the market display city maps and
offer directions from one place to another. Suppose that one such program was marketed with the
claim written on the box that the maps are “up to date” and with the promise that the program will
provide safe routes through strange cities. And suppose that, in fact, the publisher was using 17-
year old maps because they were available very inexpensively. Could someone be injured or
mugged as a result of inaccuracies in the map? If so, maybe they could sue.

Your company isn’t obliged to make any promises about what it sells, but it is bound by any
promises that it makes.

Special Relationship

You might have a special duty to provide accurate information to someone because of a
contract or a professional relationship. For example, an accountant is liable to her client for errors
in reports (such as audits) that she submits. The rules governing professional liability for
misinformation are beyond the scope of this article. Feinman3 is a useful starting place.

Sole Source of Special Information

If your company publishes navigation charts that will be used in the air by pilots, it will be
held liable for errors that cause crashes.4 If your company publishes warning labels, it will be held
liable for accidents that occur because a label that should have said “FLAMMABLE” didn’t.5

If you know that people will count on your product to provide them with accurate
information, and that your product will be the primary (and maybe only) source of information that
is available to these people, and that errors could result in deaths or injury, then you have to make
sure that the information is accurate.

1 California Appellate Reports, Third Series, Volume 212, p. 468 (California Court of Appeal, 1989).
2 Federal Supplement, Volume 670, p. 115 (United States District Court, Southern District of New

York, 1987).
3 Economic Negligence, Little Brown, 1995.
4 For example, see Halstead v. United States, Federal Supplement, Volume 535, p. 783 (United States

District Court, District of Connecticut, 1982).
5 Firkin v. U.S. Polychemical Corporation, Federal Supplement, Volume 835, p. 1048 (United States

District Court, Northern District of Illinois, 1993).

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 179

Notes

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 180

Law of Software Quality

Section 11.

Consumer Protection

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 181

Consumer Protection

Deceptive Trade Practices

Unfair Competition

Additional Warranty Rules

Additional Leasing Rules

Additional Negative Option Rules

False Claims Act

Uniform Deceptive Trade Practices Act

A person engages in deceptive trade
practices when s/he represents that goods
or services have sponsorship, approval,
characteristics, ingredients, uses, benefits,
or quantities that they do not have.

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 182

Consumer Protection

Deceptive Trade Practices

California Civil Code 1770:

The following unfair methods of competition and unfair or deceptive acts or
practices undertaken by any person in a transaction intended to result or
which results in the sale or lease of goods or services to any consumer are
unlawful:

(a) Passing off goods or services as those of another.

(b) Misrepresenting the source, sponsorship, approval, or certification of
goods or services.

(c) Misrepresenting the affiliation, connection, or association with, or
certification by, another.

(d) Using deceptive representations or designations of geographic origin
in connection with goods or services.

(e) Representing that goods or services have sponsorship, approval,
characteristics, ingredients, uses, benefits, or quantities which they
do not have or that a person has a sponsorship, approval, status,
affiliation, or connection which he or she does not have.

(f) Representing that goods are original or new if they have deterioriated
unreasonably or are altered, reconditioned, reclaimed, used or
secondhand.

(g) Representing that goods or services are of a particular standard,
quality, or grade, or that goods are of a particular style or model, if
they are of another.

(h) Disparaging the goods, services, or business of another by false or
misleading representation of fact.

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 183

Consumer Protection

False Advertising

California Business & Professions Code 17500

Applies to all advertising, not just consumer goods.

Bars making statements of fact that are known or
should be known to be false -- negligent
misrepresentations are unlawful. (see People v.
Superior Court, Orange County, 96 Cal.3d 181, 1979,
Cert. denied 446 U.S. 935.)

California Business & Professions Code 17200

As used in this chapter, unfair competition shall mean
and include any unlawful, unfair or fraudulent business
act or practice and unfair, deceptive, untrue or
misleading advertising and any act prohibited by
 . . . Section 17500

17204. Actions for any relief pursuant to this chapter
shall be prosecuted . . . by any person acting for the
interests of itself, its members, or the general public.

Attorney fees -- see Civil Code 1021.5.

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 184

Consumer Protection

Unfair Competition

Princeton Graphics v. NEC 732 F. Supp.
1258 (S.D.N.Y. 1990). NEC held liable for
advertising that the original Multisynch
monitor was VGA compatible.

Compaq Computer Corp. v. Packard Bell
Electronics, Civil Action 95-222, U.S.
District Court, D. Delaware, 1995.
Compaq alleges that Packard Bell
recycles returned, used components into
“new” computers.

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 185

Consumer Protection

FTC Actions

Go to www.ftc.gov for copies of
complaints and settlement agreements
involving such companies as Apple, Dell,
Gateway 2000, Iomega, and others.
Issues include:

⌧Failure to provide tech support for life
after promising to do so

⌧Failure to disclose key terms of the
contract

⌧Deceptive practices of various kinds

Copyright (c) 1997-1999 Cem Kaner. All Rights Reserved. 186

 Cem Kaner, Ph.D., J.D.
Law Office of Cem Kaner kaner@kaner.com
http://www.badsoftware.com 408-244-7000 (v)
P.O. Box 1200, Santa Clara, CA 95052 408-244-2181 (f)

LIABILITY FOR PRODUCT INCOMPATIBILITY

In Press, Software QA Magazine, September 1998.

What does it mean to claim that one product is compatible with another?

There are at least three meanings:

(1) The product works with (is interoperable with) another product. For example, a word-
processing program might be advertised as MS-DOS compatible if it runs under MS-
DOS. It might be advertised as LOTUS 1-2-3 compatible if it can read and write files in
Lotus's native file format.

(2) The product works just like (emulates) another product. For example, many printers
were advertised as LaserJet II-compatible. Many mice were allegedly Microsoft-
compatible. One program might be said to emulate another if the same commands yield
the same results in both cases (think of the spreadsheet war between Borland and Lotus).

(3) The product lives up to a well-specified standard that is independent of any particular
product. For example, a printer might be PostScript compatible. A modem might be
V.34 compatible. A graphics program might be JPEG-compatible (meaning that it reads
and writes JPEG files).

I'll treat these three types of claims separately later, but I also just use the word "compatible" in several
places in this paper. In those places, I am including all three types in my discussion.

Suppose that Brand X Inc. ships a product, Product X, that it advertises as compatible with RealWare
Corp.'s product, RealThing. And Suppose that Product X is not compatible with RealThing. Lots of
people stand to lose time and money because of this, for example:

〈 A company that competes with Brand X loses market share because people buy Product X
instead of the competitor's product because they think that Product X is RealThing-compatible.
This is the situation that we see claimed in Princeton Graphics v. NEC Home Electronics (1990,
discussed below).

RealWare loses market share because people buy Brand X thinking that Product X is RealThing-
compatible. Additionally, if Product X has problems and customers think that those problems are typical
of RealThing-compatible products, then RealWare loses customer goodwill for problems that don't exist
in its products. This is the situation that we see claimed in the case of Creative Labs, Inc. v. Cyrix Corp.
(1997a, 1997b, affirmed 1998) and in the case of Compaq Computer, Corp. v. Procom Technology
(1995).

Copyright (c) 1997-1999 Cem Kaner. All Rights Reserved. 187

〈 The reseller (retailer or VAR) who sold the product faces complaints, troubleshooting and other
technical support costs, refunds, and potentially lawsuits from dissatisfied customers. This is the
situation that we see claimed in the case of Step-Saver Data Systems, Inc. v. Wyse Technology
and The Software Link, Inc., (1991, discussed below).

〈 The end customer buys Product X and now has to waste time troubleshooting the difficulties
between Product X and the rest of her (software and/or hardware) system. This is often
expensive. For example, it takes in-house help desks 3 to 18 times as long to resolve a multi-
vendor problem as a problem that can be pinned to a specific piece of software or hardware
(Oxton, 1997; Schreiber, 1997). Private individuals, who don't have help desks with experienced
staff, often give up and throw products away instead of trying to make them work with their
other products.

These cases, and some statutes on deceptive trade practices, suggest some standards that we should keep
in mind when developing or marketing products that are allegedly "compatible." You'll note that three of
the four cases here are hardware cases (or, more precisely, embedded software cases). I think that's just
the luck of the draw. My bet is that the same standards will be applied to all other types of software--we
just haven't had the right lawsuits yet.

Princeton Graphics v. NEC

When IBM came out with the PS/2 computer, it established a new graphics standard, VGA. Princeton
Graphics and NEC both manufactured EGA-compatible monitors. EGA involves a resolution of 640
pixels across by 350 scan lines vertically, refreshing (repainting) the screen 60 times per second (60 Hz),
while VGA involves a resolution of 640 by 480, refreshing the screen at 70 Hz. Another standard in use
at that time, PGA, involves 640 by 480 at a refresh rate of 60 Hz.

In 1987, NEC issued a press release claiming that afer "extensive testing" the MultiSync monitor had
been determined to be "fully compatible" with VGA (Princeton Graphics v. NEC, p. 1260). But if you
switched between EGA and VGA resolution, the screen would roll, apparently because the NEC
MultiSync misinterpreted the VGA signals as PGA (wrong vertical refresh rate). You could stop the roll
when you switched into VGA mode by adjusting the vertical hold knob on the monitor, but when you
switched back to EGA, you had to adjust the vertical hold back. (Some programs were designed on the
assumption that the display was EGA while later programs supported or required VGA. Back in 1987-89,
depending on your system's software mix, you might switch back and forth from VGA to EGA several
times in a day.)

The court ruled that (p. 1262):

"When a clearly defined standard, like IBM's VGA standard, exists and is
widely accepted within the industry, a 'compatible' product must meet that
standard or at least perform in a manner equivalent to the standard's
requirements."

However (p. 1262), the court said that when there is no well-known standard in the industry,
“‘compatible’ essentially is understood to mean ‘works with’ or the ability of one device ‘to function
with’ another.”

The court ruled that NEC had falsely advertised its compatibility and held NEC liable to Princeton
Graphics.

Copyright (c) 1997-1999 Cem Kaner. All Rights Reserved. 188

Compaq v. Procom

Compaq made the Proliant line of network servers and a line of hot-pluggable hard drives for use with
Proliant servers. Compaq sold the Compaq Insight Manager (CIM) program, which monitors (among
other things) the performance of the server’s hard drives. The CIM could generate ‘prefailure warnings’
to the user, indicating that a hard drive will soon fail. If the performance of the drive was worse than
certain settings determined by Compaq, Compaq would replace the drive (if it was under warranty) even
though it had not yet failed. The threshold values (performance criterion values) differed for different
hard drives. Compaq stored the threshold values on a special partition on the disk.

Procom made Proliant-compatible drives and bought them from Seagate, the same supplier as Compaq.It
also stored threshold values on a special partition that the CIM program could find. However Procom’s
threshold values differed from Compaq’s, for the same drives.

Compaq sued Procom alleging (among other things) that Procom was falsely advertising its drives as
fully compatible with Compaq’s drives. The claim was false because Procom’s prefailure warnings
would be given to customers at different times than Compaq’s for comparable drives. Thus, their
performance was not identical.

The court relied on the determination in Princeton Graphics v. NEC, that when there is no well-known
standard in the industry, a looser definition (“works with”) is in order. Here, there was no standard for
prefailure values. Compaq had blended its assessment of technical risk and business risk in its
determination of parameters for prefailure warnings. (Remember, when a warranty-holding customer gets
a prefailure warning, he is entitled to a new drive. This is expensive. It creates a tradeoff between the
value of warning customers early and the cost of replacing drives prematurely.) Procom came up with its
own prefailure values, to be used in the same way as Compaq’s. The numbers were different from
Compaq’s but in the absence of a standard, the court didn’t know whether Procom or Compaq was using
the better set of numbers or whether the differences would matter in practice. Therefore the court ruled
that the drives were not incompatible.

Creative Labs v. Cyrix

Creative Labs makes SoundBlaster sound cards. Cyrix makes microprocessors, including the Media GX,
which is capable of producing sounds without the assistance of a sound card. The audio component of the
Media GX is called XpressAUDIO. Cyrix advertised XpressAudio as “compatible with Sound Blaster.”

Creative Labs tested a Compaq Presario 2100 computer (which uses the Media GX) and found that it was
sound-incompatible with 16 of 200 games tested (8%). Creative Labs then filed a false advertising suit
against Cyrix. As did Princeton Graphics and Compaq in their cases (above), Creative Labs filed suit
under the Lanham Act (Section 43(a); United States Code, Title 15, Section 1125(a)). The court said
(1997a, p. 1874)

Copyright (c) 1997-1999 Cem Kaner. All Rights Reserved. 189

“The elements of a Lanham Act false advertising claim are: (1) a false
statement of fact by the defendant in a commercial advertisement about
its own or another’s product; (2) the statement actually deceived or has the
tendency to deceive a substantial segment of its audience; (3) the deception
is material, in that it is likely to influence the purchasing decision; (4) the
defendant caused its false statement to enter interstate commerce; and (5)
the plaintiff has been or is likely to be injured as a result of the false
statement, either by direct diversion of sales from itself to defendant or
by a lessening of the goodwill associated with its products.”

Cyrix retested these games and said that its product failed with only 10 of them. It worked with
the other 6 when the computer was “properly configured” (p. 1875). Of these 200 games, then,
the failure rate was 5%. Cyrix claimed that it had other data indicating a failure rate of only 2%.

The court responded (p. 1875) that “Even if the failure rate of games placed on computers with
XpressAUDIO is closer to 2% than 8%, the evidence indicates that some games that function
with Sound Blaster do not function with XpressAUDIO.” Therefore, they are (evidently) not
compatible.

The three Creative Labs decisions that have issued so far have involved motions for
injunctions—court orders that Cyrix should (among other things) quit advertising compatibility
until and unless Creative Labs loses its case at trial. Therefore, the court’s reasoning and
conclusions do not (they can’t, at this point in the litigation) constitute a legally binding
determination that the Cyrix processor is incompatible with the Sound Blaster. However, they
are clear signals on how the court will rule when it is given the chance. This court’s summary of
the law came directly from Princeton Graphics v. NEC: when a standard has been defined (here,
Sound Blaster compatible), the allegedly compatible product must meet that standard (see p.
1874-1875).

Step-Saver Data Systems v. Wyse and The Software Link

Step-Saver was a value added reseller who put together systems for dentists and doctors and
lawyers. From November, 1986 to March, 1987, it sold 142 systems that treated the IBM AT
computer as a multi-user machine. The software that enabled multi-user capability was The
Software Link’s (TSL’s) Multilink Advanced, an operating system that was advertised as MS-
DOS compatible. Additionally, “Step-Saver requested information from TSL concerning this
new version of the program, and allegedly was assured by sales representatives that the new
version was compatible with ninety percent of the programs available "off-the-shelf" for
computers using MS-DOS.” (Step-Saver p. 95)

Note that The Software Link didn’t claim 100% compatibility, and therefore the strict Princeton
Graphics v. NEC standard could not apply. Instead, this court defined compatibility (“practical
compatibility” as opposed to “complete compatibility”) as (p. 106):

“Two products are compatible, within the standards of the computer industry, if
they work together almost every time in almost every possible situation.”

Copyright (c) 1997-1999 Cem Kaner. All Rights Reserved. 190

The Step-Saver case is famous for a different ruling. Step-Saver bought IBM AT computers,
loaded them with the Multilink Advanced operating system, some Wyse terminals, and a bunch
of other software. When customers returned the system as defective (allegedly because of
compatibility problems when used as a multi-user machine), Step-Saver didn’t just have a
returned operating system. It also had to deal with a now-used set of software and hardware,
and it wanted reimbursement from The Software Link (TSL) for all of its losses, not just
refunds for the returned copies of the operating system. To achieve this result, it sued TSL for
breach of warranty and for misrepresentation. TSL responded that a license had come with
each copy of the product, that the license disclaimed all warranties, express and implied and
had limited remedies to a refund of the cost of the product, that this license was a binding
contract between Step-Saver and TSL and therefore, TSL said, Step-Saver wasn’t entitled to
repayment for its losses. This license was essentially the same as the “license agreements” that
you find inside the box when you buy software or that appear on the screen when you install
software (having already paid for it).

The court threw out the post-sale license, saying that you just can’t disclaim warranties after
the sale is complete. Step-Saver was entitled to the benefit of whatever warranties were made
and whatever losses it suffered.

The attempt to add Article 2B to the Uniform Commercial Code is partially a reaction to this
decision and the cases that have followed it. For more information on that aspect of Step-Saver,
and more on the history of post-sale licenses and post-sale disclaimers, see Kaner & Pels
(1998) Chapter 7 and the Appendix. Under current law, no court has approved a post-sale
(hidden in the box until after the sale) disclaimer of warranties, not for software and not for any
other products. These disclaimers look pretty and legalistic and impressive on the paper, but
they are not likely to hold up in court.

End User Class Action Suits

Customers can’t sue under the Lanham Act but they can sue for breach of contract, for fraud,
and for deceptive trade practices (DTP). I’m not aware of DTP lawsuits that have focused
specifically on compatibility, but there is an increasing amount of DTP litigation against
software companies. I am aware of small groups of lawyers that are training each other in the
details of how to handle DTP cases against software and computer hardware companies.
Consumers can bring class action suits under DTP statutes, and they can typically get their
attorneys’ fees from the defending publisher if they win their case.

The details of the statutes vary from state to state, but the banned acts are similar. Here are
some examples from the California Civil Code Section 1770(a). The following are unlawful:

1770(a)(1) Passing off goods or services as those of another.

1770(a)(2) Misrepresenting the source, sponsorship, approval, or certification of goods or services.

1770(a)(5) Representing that goods or services have sponsorship, approval, characteristics,
ingredients, uses, benefits, or quantities which they do not have or that a person has a
sponsorship, approval, status, affiliation, or connection which he or she does not have.

1770(a)(7) Representing that goods or services are of a particular standard, quality, or grade, or
that goods are of a particular style or model, if they are of another.

1770(a)(8) Disparaging the goods, services, or business of another by false or misleading
representation of fact.

Copyright (c) 1997-1999 Cem Kaner. All Rights Reserved. 191

Consumers (or any large group of customers) can also sue as a class for breach of contract or fraud
(intentional deception).

In Sum

The court cases that we’ve seen so far don’t cover every possible situation. There haven’t been enough of
them yet, and the issues are somewhat complex. But I think that the courts have laid out a continuum that
we should pay attention to.

〈 If we are emulating or interoperating with a product that is poorly defined, the court will probably
cut us some slack when we advertise “compatible.”

〈 If we are emulating or interoperating with a product that is well defined, or if we are advertising
that we meet a well defined industry standard, then we will probably be held to it. When the
product is well defined, “compatible” means compatible. Not “sort of” compatible. Not “take two
workarounds and call me in the morning” compatible. Just plain old genuine compatibility.

Failures of compatibility have plagued software and hardware buyers. They’re tired of it. The recent
successes in the Creative Labs v. Cyrix case and the recent successes in several deceptive practices cases
will spur interest among more lawyers. We are likely to see more successful legal actions against the
publishers, manufacturers and retailers of not-quite-compatible products.

By carefully testing your company’s claims of compatibility against the products that you’re supposed to
be compatible with, you can help your company avoid slipping into an expensive, unanticipated
compatibility-related lawsuit.

References

Creative Labs, Inc. v. Cyrix Corp. (1997a) United States Patents Quarterly, 2nd Series, volume 42, p.
1872 (United States District Court, Northern District of California).

Creative Labs, Inc. v. Cyrix Corp. (1997b) United States Patents Quarterly, 2nd Series, volume 43, p.
1778 (United States District Court, Northern District of California).

Creative Labs, Inc. v. Cyrix Corp. (1998) 1998 U.S. Appellate Library LEXIS #6470 (United States
Court of Appeals for the Ninth Circuit).

Kaner, C. & D. Pels (1998) Bad Software: What To Do When Software Fails. John Wiley & Sons.

Oxton (1997, March) “Multivendor support challenges”, Software Services Conference East, Nashville,
TN.

Princeton Graphics v. NEC Home Electronics (1990) Federal Supplement, volume 732, p. 1258 (United
States District Court, Southern District of New York).

Schreiber, R. (1997, March), “How the Internet Changes (Almost) Everything,” presented at the
Association for Support Professionals’ Internet Support Forum, San Jose, CA.

Step-Saver Data Systems, Inc. v. Wyse Technology and The Software Link, Inc., (1991) Federal Reporter,
2nd Series, volume 939, p. 91 (United States Court of Appeals, 3rd Circuit).

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 192

Notes

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 193

Law of Software Quality

Section 12.

Negligence

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 194

Negligence

The Language of Negligence

Elements of a negligence case:

⌧Duty

» products must not create an unreasonable risk
of injury or property damage

» professionals must provide services at a level
that would be provided by a reasonable
member of the profession in this community

⌧Breach

⌧Causation

⌧Damages
Examples:

⌧ Duty: Bryant v. Glastetter, 95 CDOS 1426 (Cal. 4th App. Dist., Super. Ct.
No. 215438, 2/23/1995). Court ruled that drunk driver had no duty to tow
truck operator who was injured while towing drunk’s car – there was a
negligent breach of a duty, but not of a duty to protect THIS plaintiff from
THIS harm. No liability.

⌧ Causation: Reckless drivers can’t be sued until they cause an accident.

⌧ Damages: For normal bad driving, a driver pays only compensatory damages.
For reckless driving, a driver might also have to pay punitive
damages

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 195

Negligence

The Negligence Formula

“Negligence” involves a tradeoff -- conduct
must be , not just harmful.
How do we decide that conduct is
unreasonable?
Judge Learned Hand presented the tradeoff
as a formula, in the famous case of the United
States v. Carroll Towing Co.:

⌧Let be the burden (expense) of
preventing a potential accident

⌧Let be the severity of the loss if the
accident occurs

⌧Let be the probability of the accident
Failure to attempt to prevent a potential
accident is unreasonable if x

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 196

Negligence

 The Incremental Cost of
Finding a Bug

To calculate the “Burden” of additional
care, we must calculate what it would
have cost to change the process to
prevent or find this bug:

⌧the cost of strengthening the testing so
that line 7000’s bug is found in the
normal course of testing.

⌧the cost of changing the design and
programming practices in a way that
would have prevented this bug and others
like it in the first place.

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 197

Negligence

Factors for Evaluating
Negligent Conduct

Factors in the Defendant’s conduct that a
court would be likely to consider:
1 Actual knowledge of the problem
2 Expertise of the staff
3 Standard methodology
4 Industry standards
5 Safety committee & hazard analysis
6 Design for error handling
7 Handling of customer complaints
8 Bug tracking methodology
9 Quality control plan
10 Testing intensity
11 Testing coverage

For additional discussion,
see Chapter 14 of Testing Computer Software

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 198

Negligence

Actual Knowledge Can Result in
Increased Liability

General Motors v. Johnston, 592 So.2d 1054, 1992 (Supreme
Court of Alabama). Johnson purchased a new Chevrolet 2500
pickup in 1988, drove it for less than 200 miles, over two days.
With his 7 year old grandson in the truck, he pulled up to a
stop sign, started the truck again, and it stalled. A larger truck
collided with his truck, injuring Johnson and killing the
grandson.

GM had received reports of stalling problems in
vehicles like this one, and a dealer service bulletin advised
dealers that “rolling, hunting or surging idles” could be fixed
by replacing the PROM. The software on the modied PROM
was changed from the original software. This PROM controled
the fuel injector. GM chose to replace the PROM for
complaining customers, but not to announce a recall and make
the change widely available.

The jury awarded $15 million and the Alabama
Supreme Court upheld it at $7.5 million.

Complaints put you on notice of problems that you may
not have known about before you released the product.

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 199

Negligence

Industry Standards

⌧In a negligence suit, failure to follow a
standard is relevant if but only if
plaintiff can show that this failure was
a causal factor in the injury.

⌧We must distinguish between product
and process standards.

⌧To what extent should industry
standards determine a standard of
care?

⌧Are standards that are suitable for Mil
Spec also suitable for shrinkwrap
product development?

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 200

Negligence

Safety Committee,
Hazard Analysis

⌧The wrong answer is, “Safety
committee? What safety committee”

⌧Use consultants if you have to; make
sure that the committee has the
expertise to identify hazards.

⌧Try to identify all potential hazards
arising out of the product. Are there
special (higher risk) uses or users?

⌧What are the forseeable misuses of the
product?

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 201

Negligence

Error Handling

⌧Doctrine of forseeable misuse

⌧90% of industrial accidents are caused
by “user errors”

⌧Therac-25

⌧A320 airplane

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 202

Negligence

Customer Complaints

How do you handle complaints?

⌧This is your last chance to improve
customer goodwill.
» Response time - 90% abandonment rate?
» What do you do to follow up with

customers?
» What’s your process for getting information

into and out of Product Development?

⌧Evidence of good faith.
» Remember that punitives are available for

despicable conduct.
» Your process is an indicator of your

willingness to be negligent.

Jurors more likely to be people who call for
support than people who answer the calls.

⌧Baldwin v. Alabama Insurance Brokers,
599 So.2d 1196 1992 (Ct. of Civil
Appeals, AL)

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 203

Negligence

Bug Handling Process

The goal and objectives of a bug tracking
system

⌧Is the process reasonable?

⌧Is the process thorough?

⌧Is the process accountable?

⌧Are customer interests carefully
considered?

⌧Are potential consequences carefully
considered?

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 204

Negligence

Quality Control Plan

This is a broad area. There will be narrow
factual questions, and a broader
impression that the system is in control or
it is not.
⌧Design/code reviews, inspections
⌧IEEE 829 test plans
⌧ISO 9000-3
⌧Auditing of the QC plan

Speaking from the perspective of an
expert witless, it is seriously problematic
for the defendant when the defendant
writes up a detailed development process
and then doesn’t follow it.

Don’t write what you aren’t going to do.

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 205

Negligence

Test Documentation

There are many different notions of what a good
set of test documentation would include. Before
spending a substantial amount of time and
resources, it’s worth asking what documentation
should be developed (and why?)
What questions should we ask in order to
determine our requirements?
The list that follows comes from the Los Altos
Workshop on Software Testing (I thank Chris
Agruss, James Bach, Karla Fisher, David
Gelperin, Kenneth Groder, Elisabeth Hendrickson,
Doug Hoffman, III, Bob Johnson, Cem Kaner,
Brian Lawrence, Brian Marick, Thanga
Meenakshi, Noel Nyman, Jeffery E. Payne, Bret
Pettichord, Johanna Rothman, Jane Stepak,
Melora Svoboda, Jeremy White, and Rodney
Wilson for their insights.)
I don’t think it is necessary to ask all of these
questions every time. Pick the few that will be
most informative for you and your company.

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 206

Test Plan Requirements:
Contrasting Objectives

⌧ Is test documentation a product or tool?

⌧ Is software quality driven by legal issues or by market
forces?

⌧How quickly is the design changing?

⌧How quickly does the specification change to reflect
design change?

⌧How much traceability do you need? What docs are you
tracing back to and who controls them?

⌧ Is testing approach oriented toward proving conformance
to specs or nonconformance with customer expectations?

⌧Does your testing style rely more on already-defined tests
or on exploration?

⌧Should test docs focus on what to test (objectives) or on
how to test for it (procedures)?

⌧Should control of the project by the test docs come early,
late, or never?

⌧To what extent should test docs support tracking and
reporting of project status and testing progress?

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 207

Test Plan Requirements:
 Contrasting Objectives

⌧ Who are the primary readers of these test documents
and how important are they?

⌧ How well should docs support delegation of work to
new testers?

⌧ What are your assumptions about the skills and
knowledge of new testers?

⌧ Is test doc set a process model, a product model, or a
defect finder?

⌧ A test suite should provide prevention, detection, and
prediction. Which is the most important for this
project?

⌧ How maintainable are the test docs (and their test
cases)? And, how well do they ensure that test changes
will follow code changes?

⌧ Will the test docs help us identify (and revise /
restructure in face of) a permanent shift in the risk
profile of the program?

⌧ Are (should) docs (be) automatically created as a
byproduct of the test automation code?

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 208

Software Negligence:
Testing Intensity

Are these good test methods for
detecting errors? How hard are you
looking?

⌧boundaries

⌧stress tests

⌧depth of exploration of key risk
areas

Characteristics of an excellent test case

Why is this important? Because
sometimes the testing looks jury-
impressingly sloppy.

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 209

Negligence

The Problem of Coverage

Coverage measures of the amount of testing
done of a certain type. Since testing is done to
find bugs, coverage is a measure of your effort
to detect a certain class of potential errors:

⌧100% line coverage means that you
tested for every bug that can be revealed
by simple execution of a line of code.

⌧100% branch coverage means you will
find every error that can be revealed by
testing each branch.

⌧100% coverage means that you tested
for every possible error. This is
obviously impossible.

So what kind(s) and level(s) of coverage should
we consider appropriate? There is no magic
answer.

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 210

Negligence

The Problem of Coverage

Several people seem to believe that complete
statement and branch coverage means complete
testing. (Or, at least, sufficient testing.)

Part of the rationale comes from IEEE Std. 982.1-
1988, § 4.17, “Minimal Unit Test Case
Determination”

IEEE Unit Testing Standard is

100% Statement Coverage

and 100% Branch Execution

Most companies don’t achieve this (though they
might achieve 100% of the code they actually
write.)

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 211

Negligence

The Problem of Coverage
One Example: Data Flows

Start

1

2

4

3

5

6

7

Exit

X

X

X

X
means this routine
changes variable X

1(x) 2 3(x) 4 5 7
1(x) 2 4 6(x) 7
Now we have 100%
branch coverage, but
where is 1(x) 7?
1(x) 2 4 5 7

Based on an example
by Richard Bender

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 212

Negligence

The Problem of Coverage

There is no magic talisman for amount and/or
type of testing. You have to do what is reasonable
under the circumstances.

⌧ 100% line and branch coverage is not
sufficient testing

⌧ 100% line and branch coverage may not be
necessary for reasonable testing – you might
better spend your time on some other goal.

⌧ Some senior people in the field will use it
against you in expert testimony against you if
you don’t achieve 100% line/branch
coverage.

⌧Obviously (I hope that it is obviously), you
have to scale the amount of testing to the
amount and nature of risk. You have to do
what is reasonable under the circumstances.

LAW OFFICE OF CEM KANER Cem Kaner, Ph.D., J.D. kaner@kaner.com
P.O. Box 1200 408-244-7000 (Voice)
Santa Clara, CA 95052 408-244-2181 (FAX)

The Impossibility of Complete Testing

Law of Software Quality Column, Software QA magazine

Copyright © 1997 Cem Kaner. All rights reserved

I’m writing this from a hotel room in Sacramento, California. The National Conference of
Commissioners on Uniform State Laws (NCCUSL) is reviewing Article 2B of the Uniform
Commercial Code (UCC)— a 340-page statute that will govern all contracts for the
development, sale, licensing, and support of software. Next week, I’ll meet with yet more
lawyers about the same bill, at the annual meeting of the American Bar Association.

NCCUSL is the authoring organization for Uniform Laws (laws that are written to be identical in
all states). Its expenses are mainly paid by the American state governments. It is effective at
getting its bills passed. For example, over the past 12 months, 200 of NCCUSL’s bills have been
introduced in state legislatures and 95 have been passed so far.

This is a full meeting of NCCUSL. The 300 Commissioners (senior attorneys who serve as
unpaid volunteers) are reviewing nine different draft Uniform Laws, involving such areas as
child custody, guardianships, estate planning, sales of merchandise, and software. The discussion
of 2B has been largely favorable. The expectation is that it will be approved for introduction in
state legislatures in September, 1998.

For the next year, work on 2B will be done by a 16-member NCCUSL committee whose
meetings are open to the public. A typical Article 2B meeting draws 40-80 people, mainly
lawyers. The 2B Drafting Committee meetings have had more attendance and press coverage
than any of NCCUSL’s other Drafting Committees’ meetings. I’ve been attending these
meetings for the last 18 months and have been joined by other software quality advocates,
including James Bach, Doug Hoffman, Brian Lawrence, Melora Svoboda, Clark Savage Turner,
and Watts Humphrey (see Humphrey, 1997). The next meeting will be September 26-28 at the
Sofitel Hotel in Minneapolis. The meeting after that will run November 21-23 in Memphis.

As I’ve said in more detail in previous columns, I think this is a dangerous law that will reduce
software publishers’ accountability to their customers. I’ve put together a website on this,
www.badsoftware.com.

It’s tempting to argue in these meetings that software products should be free of defects.
Unfortunately, I don’t think they can be, and therefore I don’t think that the law should insist that
they be. This complicates my position in these meetings, and so I spend a lot of time explaining
simple things about software development to lawyers. One of those simple things is a lesson that
we all know (or that I hope we all know) as testers—it is impossible to fully test a program.

Copyright (c) 1997-1999 Cem Kaner. All Rights Reserved. 213

Lawyers aren’t the only people who don’t understand this. People still sign contracts that promise delivery
of a fully tested program. And I still hear executives and project managers tell testers that it is their
responsibility to find all the bugs. But how can you find them all, if you can’t fully test the program? You
can’t. As the testing expert in your company, you’ll have to explain this to people who might not be
technically sophisticated.

This paper explores three themes:

1. I think that I’ve figured out how to explain the impossibility of complete testing to managers and
lawyers, with examples that they can understand. These are my notes.

2. A peculiar breed of snake-oil sellers reassure listeners that you achieve complete testing by using
their coverage monitors. Wrong. Complete line and branch coverage is not complete testing. It
will miss significant classes of bugs.

3. If we can’t do complete testing, what should we do? It seems to me that at the technical level and
at the legal level, we should be thinking about “good enough testing,” done with as part of a
strategy for achieving “good enough software.”

Tutorial on Impossibility
You probably know this material, but you might find these notes useful for explaining the problem to
others.

Complete testing is impossible for several reasons:

〈 We can’t test all the inputs to the program.

〈 We can’t test all the combinations of inputs to the program.

〈 We can’t test all the paths through the program.

〈 We can’t test for all of the other potential failures, such as those caused by user interface design
errors or incomplete requirements analyses.

Let’s look at these in turn.

Can’t test all inputs
The number of inputs you can feed to a program is typically infinite. We use rules of thumb (heuristics) to
select a small number of test cases that we will use to represent the full space of possible tests. That small
sample might or might not reveal all of the input-related bugs.

Valid Inputs: Consider a function that will accept any integer value between 1 and 1000. It is possible to
run all 1000 values but it will take a long time. To save time, we normally test at boundaries, testing
perhaps at 0, 1, 1000, and 1001. Boundary analysis provides us with good rules of thumb about where we
can shortcut testing, but the rules aren’t perfect.

One problem is that many programs contain local optimizations. Even though every integer between 1 and
1000 might be valid, the program might actually process these numbers differently, in different sub-ranges.

For example, consider the Chi-Square function, a function popular among statisticians. One of the inputs to
Chi-Square is a parameter called “degrees of freedom” or DF, for short. There is a second input, which

Copyright (c) 1997-1999 Cem Kaner. All Rights Reserved. 214

I’ll call X. Let’s write a program to calculate Chi-Square(X,DF). The shape of the Chi-Square function
changes, depending on the value of DF.

〈 When DF = 1, the shape of Chi-Square (X,1) is exponential. Chi-Square(X,1) is large for tiny
values of X, but drops rapidly toward 0 for larger values of X. A computer program can
calculate the exact value of Chi-Square (X,1).

〈 When DF is larger than 1, its shape changes and we lose the ability to exactly calculate the
value of Chi-Square. Abramowitz & Stegun’s famous Handbook of Mathematical Functions
(1964) provides a good formula for closely approximating values of Chi-Square.

〈 For DF of 100 or larger, Abramowitz and Stegun recommend using yet a third function that is
faster and easier to compute.

If you don’t know that the program uses three different algorithms to estimate the value of Chi-Square,
you won’t bother testing at intermediate values like 100.

There are lots of optimizations in code—special treatments for special cases or for ranges of special
cases. Without detailed knowledge of the internals of the program, you won’t know what to test.

Invalid Inputs: If the program will accept any integer between 1 and 1000, then to test it completely,
you’d have to test every number below 1, above 1000, all the rational numbers, and all the non-numeric
inputs.

Suppose you only tested –1, 0, and 1001 as your invalid numerical inputs. Some programs will fail if you
enter 999999999999999—a number that has too many characters, rather than being too numerically
large.

Edited Inputs: If the program accepts numbers from 1 to 1000, what about the following sequence of
keystrokes: 1 <backspace> 1 <backspace> 1 <backspace> 1000 <Enter>? If you entered single digits and
backspaced over them hundreds of times, could you overflow an input buffer in the program? There have
been programs with such a bug. How many variations on editing would you have to test before you could
be absolutely certain that you’ve caught all the editing-related bugs?

Timing Considerations: The program accepts any number between 1 and 9999999. You type 123, then
pause for a minute, then type 4567. What result? If you were typing into a telephone, the system would
have timed you out during your pause and would have discarded 4567. Timing-related issues are at the
heart of the difference between traditional systems and client/server systems. How much testing do you
have to do to check for timeouts and their effects? If timeouts do occur in your system, what happens
with 1-pause-2-pause-3-pause where no one pause is quite long enough for a timeout, but the total pause
time is? What if you type 1-pause-2 with a pause that is just barely enough to trigger a timeout? Can you
confuse the system by typing the 2 just barely too late?

Can’t test all combinations of inputs
A few years ago, printers and video cards both came out in higher resolution models. On a few programs,
you could run the printer at high resolution (600 dpi) with no problem and you could run video at high
resolution, but if you tried a print preview, crash. In retrospect, it’s easy to understand that your video
driver might interact with your printer driver, but the bug was a big surprise to us at the time. You
probably know of interactions between mouse and video drivers. How many versions of mouse drivers
should we test in combination with how many video drivers with how many printer drivers?

Copyright (c) 1997-1999 Cem Kaner. All Rights Reserved. 215

I Suppose a program lets you add two numbers. The program’s design allows the first number to be 1 and
100 and the second number to be between 1 and 25. The total number of pairs you can test (not counting
all of the pairs that use invalid inputs) is 100 x 25 (2500).

In general, if you have V variables, and N1 is the number of possible values of variable 1, N2 is the
number of possible values of variable 2, and NV is the number of values of variable V, then the number
of possible combinations of inputs is N1 x N2 x N3 x . . . x NV. (The number is smaller and the formulas
are more complicated if the values available for one variable depend on the value chosen for a different
variable.) It doesn’t take many variables before the number of possible combinations is huge.

We can use heuristics (domain testing) to select a few “interesting” combinations of variables that will
probably reveal most of the combination bugs, but we can’t be sure that we’ll catch all of them.

Can’t test all the paths
A path through a program starts at the point that you enter the program, and includes all the steps you run
through until you exit the program. There is a virtually infinite series of paths through any program that is
even slightly complex.

I’ll illustrate this point with an example from Glen Myers’ (1979) excellent book. Some students of mine
have had trouble with Myers’ diagram, so Figure 1 present the example in a flowchart-like format.

Figure 1. The Paths Example, flowcharted

A

B

C

D

E

F

G

H

I

X EXIT

< 21 times
through the
loop

Copyright (c) 1997-1999 Cem Kaner. All Rights Reserved. 216

The program starts at point A and ends at Exit. You get to Exit from X.

When you get to X, you can either exit or loop back to A. You can’t loop back to A more than 19 times.
The twentieth time that you reach X, you must exit.

There are five paths from A to X. You can go A to B to X (ABX). Or you can go ACDFX or ACDGX or
ACEHX or ACEIX. There are thus 5 ways to get from A to the exit, if you only pass through X once.

If you hit X the first time, and loop back from X to A, then there are five ways (the same five) to get from
A back to X. There are thus 5 x 5 ways to get from A to X and then A to X again. There are 25 paths
through the program that will take you through X twice before you get to the exit.

There are 53 ways to get to the exit after passing through X three times, and 520 ways to get to the exit
after passing through X twenty times.

In total, there are 5 + 52 + 53 + 54 + . . . + 520 = 1014 (100 trillion) paths through this program. If you
could write, execute, and verify a test case every five minutes, you’d be done testing in a billion years.

Sometimes when I show this example to a non-programming executive, he doesn’t appreciate it because
he doesn’t realize how simple a program this is. This program has just one loop. Most programs have
many loops. This program has only five decision points. (For example, there’s a decision point at A
because you can go either from A to B or from A to C.) Most programs have many decisions. Students in
their first semester of their first programming class will probably write more complex programs than this
one.

Another path example
Some people dismiss the path testing problem by saying you can run all the tests you need with sub-path
testing. A sub-path is just a series of steps that you take to get from one part of the program to another. In
the above example, A to C is a sub-path. So are ACD, ACDF, and ACDFX. Once you’ve tested ACDFX,
why should you test this sub-path again? Under this viewpoint, you’d probably test ABX, ACDFX,
ACDGX, ACEHX and ACEIX once each plus one test that would run you through X the full 20 times.
Think realistically, these people say. The program is not going to be so weirdly designed that it will pass
a sequence like ACDFX one time and then fail it the next time. Sometimes they’re wrong.

If you go through a sub-path with one set of data one time, and a different set of data the next, you can
easily get different results. And the values of the data often depend on what you’ve done recently in some
other part of the program.

Here’s the example that I use to illustrate the point that simple sub-path testing can miss devastating
bugs. As one of the system’s programmers, I helped create this bug and then helped troubleshoot it after
we started getting calls from beta testers in the field. I’ve simplified the description and I’ve probably
misremembered some minor details, but the essence of the bug and the circumstances are captured here.

The application was a voice/data PBX (private telephone system) that used a custom station set
(telephone, but with a built-in central processor, memory, and display). The station set had an LCD
display. The top line showed information, the second line showed choices. For example, when you were
talking to someone, the second line would show choices like “Transfer” and “Conference.” Press the
button below “Transfer” to transfer the call. If you had calls on hold, you could press a button to display
the hold queue. For each call, you’d see a person’s name or phone number, or a telephone line (we
showed the best information we had). You could have up to ten calls on hold at the same time. The

Copyright (c) 1997-1999 Cem Kaner. All Rights Reserved. 217

display could show up to four calls at once, and you could scroll through the list. Press the button under
the name to connect to the call.

Phone systems have conflicting design goals. For example, fast performance is very important. When you
pick up a phone’s handset, you expect to hear dial tone right away. But you also expect absolute
reliability. Error checking and error recovery take time and can interfere with performance.

When a call was put on hold, we stored information about it on a stack. We could have up to ten calls on
hold at once, so the stack had to be ten deep. We made it large enough to hold twenty calls, just in case
we somehow forgot to take a call off of the stack when you connected to it or you or the caller hung up.
We had no reason to expect stack problems, but the essence of fault tolerant programming is that you
anticipate problems that the system could have and make sure that if those problems ever arise (perhaps
when someone adds a new feature), they are going to be controlled.

We would have liked to check the integrity of every stack every time that a phone call changed state
(such as going on or off of hold). Unfortunately, this took too much time. Instead, we defended against
the possibility of an error by allowing stack space for 20 calls instead of 10. We also created a Stack
Reset command. Any time your phone got to an idle state (no calls connected, on hold, or waiting), we
knew that your stacks had to be empty. Therefore, we forced your stacks to be empty.

Copyright (c) 1997-1999 Cem Kaner. All Rights Reserved. 218

Figure 2. State Diagram of the Phone System

Take a look at the simplified state diagram, Figure 2.

Your station set starts in the Idle state. When someone calls you, the set moves into the “Ringing” state.
Either you answer the phone (“Connected” state) or the caller gives up, hangs up, and you go back to
Idle. While you’re connected, you or the caller can hang up (back to Idle in either case) or you can put the
caller on hold. When the caller is on hold, you can hang up on him. (This lets you get rid of a caller who
is behaving inappropriately, without making it obvious that you are intentionally hanging up.)

Unfortunately, we missed a state transition. Sometimes, when you put a person on hold, she hangs up
before you get back to her. See Figure 3. In retrospect, and in the way that I describe the state transitions,
this is obvious. In retrospect, it is astonishing that we could have missed this case, given the ways that we
drew our diagrams and discussed/reviewed our approaches. But we did. Mistakes happen, even when
bright, careful people try to prevent them.

Idle

Connected

On Hold

Ringing Caller
hung up

You
hung up

Copyright (c) 1997-1999 Cem Kaner. All Rights Reserved. 219

The effect of the mistake was quite subtle. When the caller hangs up while she waits on hold, her call is
dropped from the hold queue. The call no longer appears on your display and you can still put up to ten
calls on hold. Other system resources, such as time slices reserved for the call and phone lines used by the
call, are freed up. It is impossible for the system to try to reconnect to the call; the only error is that a bit
of space on the stack is wasted for a short time. Because the stack depth is 20 calls, and the design limit is
10 calls on hold, the system can tolerate an accumulation of 10 such errors before there is any
performance effect. Furthermore, as soon as the phone returns to the idle state, the stacks are cleared, and
the wasted stack space is recovered.

Figure 3. Corrected State Diagram of the Phone System.

Idle

Connected

On Hold

Ringing Caller
hung up

You
hung up

Copyright (c) 1997-1999 Cem Kaner. All Rights Reserved. 220

If you did manage to run your phone so busy for so long that eleven of your callers hung up while on hold
before you got the phone back to an idle state, and if you then tried to put a tenth call on hold, your phone
would take itself out of service. It is bad for a telephone system to lose or drop calls, so calls on hold or
waiting on the phone going out of service were automatically transferred to the hold and waiting queues
of up to two other phones that you had designated as back-up systems. Once the calls were cleared off
your phone, it rebooted itself, downloaded code and data from the main server (the PBX’s main
computer) and was back in service within two minutes.

Suppose that the phones that your calls were transferred to were as busy as yours. Your transferred calls
would fill their hold queue, people would wait longer to be answered, people would hang up while they
were waiting, and soon those phones would crash too. And as they crashed, they would send their calls
back to your phone. This is a one-phone-at-a-time example of a “rotating outage.”

We saw this problem at a beta site of stock brokers, the gymnasts of the telephone world. They loved our
phone, except when it would mysteriously crash when a stockbroker was at her busiest. These crashes
were expensive.

We were lucky that this was the worst consequence of the bug. Some communities’ 9-1-1 (emergency
response) administrators were interested in beta testing our system. We were reluctant to send buggy
code to 9-1-1 so, fortunately, we never did set up such a beta site. Back in those days, some 9-1-1 systems
practiced triage. If you called 9-1-1 and the dispatcher decided that your call wasn’t urgent, then he
would put you on hold and check the next waiting call. Once the genuine emergencies were handled, the
non-emergency calls were taken off hold and dealt with. Under these circumstances, every phone’s hold
queue would often be full. Our bug would have been crashing 9-1-1 telephones, and that reduction in
emergency response service would probably have resulted in unnecessary deaths. This was a serious bug.

Think about the paths through the program that you would have to test to find this bug in the laboratory.
I’ll define a “path” as something that starts when your phone is idle, goes through various steps, but ends
up with the phone back at idle. A path might correspond to receiving an incoming call, answering it,
receiving a second call, answering it (puts the first call on hold), switching between calls (putting each on
hold), setting up a conference (all three talk together), receiving another call during the conference,
putting the conference on hold, more switching back and forth, making an outgoing call with all of these
people on hold, transferring the call, then reconnecting to the held calls and ending them, one at a time,
until the phone was idle. That is one path.

As you design your set of tests, note that you have no expectation of finding stack bugs. Stack corruption
issues had been cleared up about a year before. There were no known existing stack problems. Therefore
you probably will not be taking special care to search for new stack failures. Furthermore, if you do run
stack-related tests, you will discover that you can put 10 voice calls on hold, 10 data calls on hold, deal
with 10 voice calls and 10 data calls waiting, and take calls on and off hold on any of those channels with
no problem. If you hang calls up while they are holding, all visible indications are that that call is
terminated correctly. And because the stack is fully reset as soon as the phone is allowed back to idle
state (no calls connected, waiting. or on hold), you will not see a failure unless your test involves having
11 callers hang up while waiting on hold, and putting another 10 calls on hold together, before taking the
phone back to idle. You can use a debugger to check the contents of the stack (we did glass box and black
box testing), but if you run a simple test like putting the call on hold, letting the call disconnect itself, and
then watching the phone reset its stack, the phone will appear to work correctly, unless you are very, very
observant, because the system does a stack reset for your phone as soon as it hits idle, which

Copyright (c) 1997-1999 Cem Kaner. All Rights Reserved. 221

happens in this test only a few instructions after the caller hangs up. So the stack will be clear, as it
should be, after the simple caller-hung-up-on-hold test.

If you were not specifically looking for a problem of this kind, how huge a set of path tests would you
have to design before you could be reasonably confident that your set of tests would include one that
would reveal this bug? I think the number of paths (from idle state to idle state) that you would have to
explore before you stumbled across this bug would be huge.

Lots of other tests
A system can fail in the field because the software is defective, the hardware is malfunctioning, or the
humans who work with the system make a mistake. If the system is designed in a way that makes it likely
that humans will make important mistakes, the system is defective. Therefore, to find all defects in a
system, you have to test for usability issues. And hardware/software compatibility issues. And
requirements conformance issues, timing issues, etc. There are lots and lots of additional tests.

Dick Bender publishes a program called SoftTest that analyzes a well-written external specification and
produces an optimal set of tests using a method called cause-effect graphing (see Myers, 1979 or Kit,
1995). This method helps you select a relatively small set of combinations of data and sub-paths that
covers a wide range of potential problems. As part of the process, SoftTest estimates the number of
unique test cases that could be run through the program. I was at his office when they analyzed a complex
program. The computer plodded along for a while, then printed its estimate: 10100 tests. (SoftTest then
suggested a set of about 3000 tests that covered the situations that cause-effect graphing would tell you
were interesting.) 10100 tests is such a big number that you might not realize how big it is. So here’s a
comparison. I’ve been told that current estimates of the number of molecules in the universe is 10 90. No
matter how many testers and how much automation you use, you aren't going to run 10 100 test cases in a
commercially reasonable time.

Coverage Monitors
Some testing experts call coverage monitors state-of-the-art tools and tell us that we aren’t doing
adequate testing unless we can demonstrate 100% coverage using a coverage monitor. I don’t think the
situation is that straightforward (Kaner, 1996b), but there’s room for argument. But other people go
farther than this, saying that if you achieve 100% coverage as measured by a coverage monitor, then you
have achieved “complete” coverage and you have done complete testing. This is baloney.

A coverage monitor is a program that will measure how many tests you have run of a certain type, out of
a population total of possible tests of that type. You achieve complete coverage when you finish running
all of the tests of that type. For example, the monitor might check how many statements (or lines of code)
you have executed in the program. A more sophisticated monitor recognizes that you can branch in many
ways from one statement to others, and counts how many branches you have executed. You achieve
complete statement-plus-branch coverage when you’ve tested every statement and every branch. Most
discussions of coverage that I see are either of statement-plus-branch coverage or of some technique that
adds a bit more sophistication to the same underlying approach.

Coverage-based testing can miss data flow-related bugs
Statement and branch coverage look at software in the same way that you would if you were preparing a
detailed flowchart. In 1967, in my first programming class, I learned that the key to good program design

Copyright (c) 1997-1999 Cem Kaner. All Rights Reserved. 222

was to draw flowcharts. But the field has made progress since then. For example, it’s often more
important to look at the flow of data through the program, the ways that inputs are transformed into
outputs, than to think about what instruction the processor will execute next.

More people know how to read flowcharts than data flow diagrams, so I’ll present a data flow problem
here in flowchart style. This is based on an example developed by Dick Bender in his course on
Requirements-Based Testing. See Figure 4.

In Figure 4, we have a 7-statement program that uses one variable, X. This is a payroll program. It
calculates your paycheck. X is the amount you are paid.

On line 1, the program initializes X. We’ll give the program a bug, and say that line 1 initializes X to
$1,000,000. (Of course, you might think of this as an undocumented feature.)

Line 2 calculates your base pay, setting a new value for X in line 3.

Line 4 determines whether the amount of your pay should be calculated using a different formula,
perhaps because you are on vacation and so you get vacation pay instead of pay for hours worked. If so,
X is reset in line 5.

At line 7, the program prints your check.

Copyright (c) 1997-1999 Cem Kaner. All Rights Reserved. 223

Figure 4. Complete Coverage Misses a Dataflow Bug.

There are three first-order data flows in this program. Think of a data flow as involving a path from the
place or event that sets a variable’s value to a place where that value is used. The flows are 1-to-7 (line 1
sets a value for X, and the value is used in line 7), 3-to-7, and 5-to-7.

Start

1

2

4

3

5

6

7

Exit

X

X

X

X
means this routine
changes variable X

1(x) 2 3(x) 4 6 7
1(x) 2 4 5(x) 7
Now we have 100%
branch coverage, but
where is 1(x) 7?
1(x) 2 4 6 7

Based on an example
by Richard Bender

Print X

Copyright (c) 1997-1999 Cem Kaner. All Rights Reserved. 224

Now let’s do some coverage testing.

For our first test, we’ll go through lines 1 (sets X), 2, 3 (sets X), 4, 6, and 7 (prints X). This covers all the
lines except 5 and it covers the branches from 2 to 3 and from 4 to 6. To achieve complete line and
branch coverage, we need a test that includes line 6 and the branches from 2 to 4 and from 4 to 5.
Therefore our next test runs through lines 1 (sets X), 2, 4, 5 (sets X) and 7 (prints X).

We now have complete line and branch coverage. Have we tested the program completely? Absolutely
not.

This “complete” pair of tests only covers two of the program’s data flows, 3-to-7 and 5-to-7. If you
stopped here, no one would ever know that you’ll get paid $1,000,000 if the program ever runs the path
through lines 1 (sets X), 2, 4, 6, 7 (prints X).

Interrupt-related bugs
Here’s another example of the holes in flowchart-driven (line/branch) testing. While a computer is
executing a main program, it might receive a signal, called an interrupt, telling it to switch focus to
another routine called the interrupt handler. The computer will save certain working variables in a
temporary storage spot, then handle the interrupt, then recover its working variables and return to the
main routine as if nothing had happened. You might jump to the interrupt handler from (almost) any line
in the main program. Coverage monitors don’t count these implicit jumps from every line to the interrupt
handler, for every possible type of interrupt. A program that deals with an interrupt can affect the main
routine in many ways. For example, it might reset a variable that’s in use or take a device out of service.
Here’s a specific example.

In the main program, we’ll input values for A and B, then check whether B is zero, and if not, divide A
by B. Suppose that right after we check B, but before we divide, there’s an interrupt. The effect of the
interrupt is to reset B to 0. Now we come back to the main routine. It knows that B is not zero because it
just tested B. Therefore it divides A by B (which has just been reset to 0) and crashes.

This situation might seem far fetched, but it is not unusual in event-driven systems, in which many
different events can happen at any time. Traditional programmers often write routines that input A, input
B, check B for zero, do a bunch of stuff, then divide A by B. In an event-driven world, programmers learn
the hard way that the more intervening processing between the time you check B’s value and the time you
use it, the greater the chance that B’s value has changed while you weren’t looking. Therefore, real-time
programmers will often check for B=0 occur just before B is actually used as a divisor, each time B is
used as a divisor. This appears to make no sense in the mainline code, but it makes great sense when you
remember that at any instant the program might switch to some other routine that can affect the values of
the program’s variables.

Coverage monitors miss issues like these.

Missing code
The problem in the telephone example was that we had forgotten to write about 10 lines of code to handle
one state transition. All of the lines of code that we did have worked. We tested all of the relevant lines of
code and didn’t find this bug.

Copyright (c) 1997-1999 Cem Kaner. All Rights Reserved. 225

If you divide A by B, and forget to check for B=0, the program doesn’t crash because a bad line is
present. It crashes because the line that was supposed to test for B=0 is not there. The program is broken,
even though every line and every branch work properly.

Coverage monitors tell you whether you have tested every line and every branch. They don’t tell you that
you need more lines and branches.

Requirements-related errors
Suppose you’re writing a program to compute taxes, and the government changed its tax rules such that
income earned before May 5, 1997 is taxed at one rate and income earned after May 5 is taxed at a
different rate. The programmer, having never read the tax laws, calculates using the current (post-May)
rate without realizing that a different formula is needed before May 5.

A coverage monitor will show that every line is tested and working, but it will not help you discover that
a system requirement (calculate taxes for January to May correctly) has not been met and will not help
you discover that another requirement (calculate taxes for May 5 itself) is ambiguously specified because
the law refers to dates before and after May 5.

Compatibility/configuration and other errors
Coverage-based testing won’t tell you that the program works with one printer but not with another
allegedly compatible one. It won’t tell you that the documentation is error-ridden, that the program is
unusably complex, that the program fails only on specific values, that the program fails when too many
processes are running or too many computers are demanding attention at once.

Coverage-based testing tells you that you have traced though the flowchart. No more, no less. Flowcharts
are good, but bugs know how to hide in them. Coverage-based testing is not complete testing unless we
broaden our definition of coverage dramatically, in which case we discover 10100 possible tests and
never achieve complete coverage.

What Does This Mean For Software Quality?
I wouldn’t spend so much of my time writing about testing and teaching people to be better testers if I
wasn’t absolutely confident of the value of testing. But if you can never come close to completeness in
testing, then you would be unwise to think of testing as “quality assurance.” Testing groups that name
themselves “QA” are misleading themselves and the company they work in.

Some testing groups add a few metrics-measurement, inspection, and standards-compliance functions. Do
this make them "quality assurance” groups. No.

Think back to the telephone system described above. An important aspect of the reliability of that system
was the management of time-related risks. Suppose that you were running a QA group and the
programmers made a lot of time-related bugs. Could you send the programmers out for retraining? Could
you require them to adopt the new practices? Could you give bonuses to the ones who made the most
progress? If you don’t have the authority to manage and train the programming staff, then you don’t have
the power to assure quality. If you do have that power, your title is probably Vice-President of Product
Development, not Manager of Quality Assurance. Testing groups and testing-plus-other-measurements
groups are doing Quality Assistance not assurance.

Copyright (c) 1997-1999 Cem Kaner. All Rights Reserved. 226

Quality is multidimensional. A stakeholder in a product will justifiably consider a product to be low
quality if it doesn’t satisfy his reasonable needs. Those needs differ widely across stakeholders. For
example, even if the English language version of a product is reliable, a localization manager can
reasonably call it unacceptable if her team has to recompile it in order to translate and adapt the program
for another country. A support manager can reasonably call a reliable program unacceptable if it is
impossible for customers to understand. A program that isn’t written in a maintainable style won’t stay
reliable for long. And a customer might be happier with a program that occasionally crashes but is easy to
use and that does the tasks that he needs, rather than a harder, less complete program whose failures can
never be blamed on coding errors.

Software companies have to balance these different quality-related demands. To do it, they have to make
tradeoffs during design and development. A drive to eliminate all coding errors from a program might not
be the most effective drive to improve its overall quality.

Software publishers have to balance these demands because they have economic constraints. By spending
a few dollars to prevent software failures, you can avoid wasting a huge amount of money on the
consequences of those failures. For example, at an average cost of about $23 per technical support call,
you can save $1 million by avoiding the need for about 43,500 calls. Several mass-market products have
such high call volumes that they can save a fortune by investing in call volume reduction. But how much
should a company spend if it doesn’t know how many copies of the product it will sell? We make guesses
about product volumes, but in my experience, many of those guesses are wrong. At what point do the
direct cost (staff salaries), the sales lost due to delay, and the opportunity costs (you want to be building
your next product) outweigh the benefit to be gained by finding and fixing more bugs? Must we run every
test, in order to search for every bug? Are there no bugs that can be left unfixed? Quality is sometimes
free (over the long term). Quality/cost analysis is rooted in tradeoffs. (Kaner, 1996a).

Remember too that there are significant costs of delayed time to market. As the best known example, a
product that comes first to market will often sell much better than a technically superior product that
comes out a few months later. What is the proper tradeoff between investment in quality and cost of delay
in the marketplace?

The quality/cost tradeoffs are difficult. I don’t think that it is possible today to release an affordable
product that is error free and that fully meets the reasonable quality-related objectives of all of the
stakeholders (including the customers). The goal of what is recently being called the “Good Enough
Software” approach is to make sure that we make our tradeoffs consciously, that we look carefully at the
real underlying requirements for the product and ask whether the product is good enough to meet them.
Many of these requirements are not expressed clearly, and our initial statements of them might overstate
or understate the actual needs. Our understanding of requirements shifts as we learn more about the
product and the stakeholders. (Lawrence, 1997; Lawrence & Johnson, 1997).

Among the tradeoffs that we make are decisions about how extensively to look for bugs—if we can’t do
all possible test cases, we have to do less, and we will miss some. Our goal is “Good Enough Testing.”
(Bach, 1997a).

Another piece of the “good enough” approach is explicit recognition of the fact that software companies
choose to not fix some known bugs. I was surprised recently to read that the “good enough” approach
defines itself in terms of not fixing all the bugs, and then to read that no one really deliberately ships with
known bugs. If you haven’t read that claim yet, don’t bother looking for it. But if you did, let me say first
that every software company that I have ever personally worked with or consulted to has made conscious,
deliberate decisions to release software with known bugs. This is not new—I wrote about this

Copyright (c) 1997-1999 Cem Kaner. All Rights Reserved. 227

practice of deferring bugs (we’ll fix them later) as a normal practice in the industry in the first edition of
my book (Kaner, 1988), extended the discussion of the bug deferral process in the second edition (Kaner,
Falk & Nguyen, 1993), and no one has contacted me to tell me that this is unrealistic. I teach a course on
testing at UC Berkeley Extension, at various hotels, at ASQC (now ASQ) San Francisco, and at many
companies and the course includes extended discussion of risk analysis and persuasion techniques to
minimize the number of inappropriately unfixed bugs. None of these students tell me that they fix all the
bugs in their company. Many of them have shared with me the process they use for analyzing whether a
particular bug must be fixed or not. As it applies to bug deferral decisions, which is only a small part of
its scope, the goal of the Good Enough Software approach is to see that these bugs are analyzed
thoughtfully and that decisions are made reasonably.

The Good Enough Software approach is difficult because we reject the easy formulations, like “Quality is
Free” and “Test Everything.” We live in a world of tradeoffs. We see imperfection as a fact of life. Our
objective is to choose design, development, testing and deferral strategies that help us manage
imperfection in the service of developing products that, despite their flaws, are excellent tools for their
purposes. (Bach, 1997a,1997b).

Back to the Legal Stuff
What does it mean to accept that imperfections are inevitable, and that complete testing is impossible?
Should we set a legal standard of perfection anyway and penalize manufacturers for all bugs, no matter
how good the product is? I think not.

But there has to be a limit somewhere. It’s one thing to release a product with a bug that you never found,
despite reasonably good development (including testing) practices. It’s a different matter when you
release with a known bug that you didn’t disclose to the customer. The customer uses the product in a
normal way, runs into the bug and loses work and data, including hardware configuration data or data
created by some other program. Recovering this will be expensive. If the software publisher knew of this
problem, ran its cost/benefit analysis and chose to ship it anyway, why should the customer bear the cost
of the bug?

And why should we protect publishers who choose to do virtually no testing? If they pass off their
software as normal, finished product and it crashes all the time and does other damage, why should
customers pay for the cost of that other damage?

The question of who pays for damage plays a big role in cost/benefit analyses (Kaner, 1996a; Kaner &
Pels, 1997). If the publisher has minimal risk, it can afford to ship shoddier products.

Let me give you an example from the draft statute that is before NCCUSL. The draft addresses liability
for viruses. The Reporter (senior author) of the draft wrote a cover memo to NCCUSL (Nimmer, 1997),
in which he says that “Significant new consumer protections are proposed . . . The significant new
protections include: creation of a non-disclaimable obligation of reasonable care to avoid viruses in
the traditional mass market” (my italics). In this list of five significant new consumer protections, virus
protection came first.

Look in the draft (NCCUSL, 1997) at Section 2B-313, Electronic Viruses. As advertised in the cover
memo, 2B-313 does require software publishers to “exercise reasonable care to ensure that its
performance or message when completed by it does not contain an undisclosed virus.” This requirement
applies to software products sold in stores, like Microsoft Works or a flight simulator game. For products
sold over the internet or for products costing more than about $500 (there are other exceptions too), the

Copyright (c) 1997-1999 Cem Kaner. All Rights Reserved. 228

publisher is allowed to disclaim liability for viruses by burying a statement that “we didn’t check for
viruses” in the fine print of a license that you won’t see until after you buy the product.

The section defines reasonable care as searching for “known viruses using any commercially reasonable
virus checking software.” I don’t know any software publisher today who only looks for known viruses,
and very few mass market publishers use only one virus checker. According to the reviews that I see on
the web (PC World and CNET cover this from time to time), no virus checkers catch 100% of the known
viruses. Further, virus creators sometimes design their virus to be undetectable by the current version of a
specific virus checker. (See the discussion of Microsoft AV in Cobb, 1996.) Many publishers (I suspect
that this is the large majority) use at least three virus checkers, at least in the Windows and Windows 95
markets. The statute is thus defining “reasonable care” as something less than the minimum that I’ve seen
done by any even-slightly-concerned software publisher. I don’t think that this is a drafter’s accident—
I’ve explained virus-related issues to the Drafting Committee at length, at two separate meetings.

If the publisher exercises what the statute defines as “reasonable care,” you can’t sue it for a virus on the
disk.

Section 2B-313 also requires customers to exercise reasonable care to check for viruses, and defines
reasonable care in the same way for customers as for publishers. If you don’t, then under Section 2B-
313(d) “A party is not liable if . . . the party injured by the virus failed to exercise reasonable care to
prevent or avoid loss.”

Let’s see what happens if you buy a program at a store, that has a virus that trashes your hard disk. You
pay money to a technician to recover (some of) your files and to get your system working again.

If the publisher checked for viruses by using only one virus checker, you (the customer) can’t recover for
your expenses and lost data because the publisher has exercised “reasonable care.”

If the publisher didn’t check for viruses, but you (or your child) trustingly installed the program on your
computer without checking for a virus, you can’t recover because you didn’t exercise “reasonable care.”

What if the publisher didn’t check for a virus, but you did? Unfortunately, you missed it. You’ve
exercised reasonable care and the publisher has not. Do you get reimbursed for recovery of your files and
your system? Nope. After all, the publisher’s duty is to check for a virus using one virus checker. Even
though it didn’t do that, you proved that if the publisher had checked for a virus using a commercially
reasonably virus checker (yours), it wouldn’t have found a virus. Therefore its failure to exercise
reasonable care didn’t cause the damage and therefore (this is how negligence law works, folks), the
publisher is not liable.

OK, what if the publisher made it impossible to check its product for viruses until after you installed the
program? For example, some manuals explicitly instruct you to turn off your virus checker during
installation. You got the virus because you followed the instructions. Now do you get reimbursed for
recovering your files and system? Nope. This is a consequential loss, and the publisher gets to disclaim
all liability for consequential losses in the fine print of the you-can’t-see-it-until-after-you-buy-the-
product license.

When I was in law school, one of our professors defined the “blush test” by saying that an argument or a
lawsuit is frivolous if you can’t present it to the judge without blushing. I don’t know how anyone could
pass the blush test while saying that Section 313 provides a significant new consumer protection.

Copyright (c) 1997-1999 Cem Kaner. All Rights Reserved. 229

I Section 313 will probably be revised—it’s just too obvious. But over the coming 18 months, many other
claims will be made about the fairness and customer protection features of Article 2B. When you hear
them, think about Section 313 and ask your friends and state legislators to look carefully before they
believe that Article 2B will promote the marketing of good enough software or even provide basic
incentives for honesty and fair dealing in the industry.

References
Abramowitz, M. & Stegun, I.E. (1964) Handbook of Mathematical Functions. Dover Publications.

Bach, J.S. (1997a) “Good enough testing for good enough software.” Proceedings of STAR 97 (Sixth
International Conference on Software Testing, Analysis, and Review, San Jose, CA., May 7, 1997, p. 659.

Bach, J.S. (1997b) Is the Product Good Enough? Unpublished manuscript, probably available at
www.stlabs.com.

Cobb, S. (1996) The NCSA Guide to PC and LAN Security. McGraw-Hill.

Humphrey, W.S. (1997) Comments on Software Quality. Distributed to the National Conference of
Commissioners on Uniform State Laws for their Annual Meeting, July 25 – August 1, 1997, Sacramento,
CA. Available at several websites, including www.badsoftware.com.

Kaner, C. (1988) Testing Computer Software. TAB Professional & Reference Books.

Kaner, C., Falk, J., & Nguyen, H.Q. (1993) Testing Computer Software. 2nd Ed., International Thomson
Computer Press.

Kaner, C. (1996a) “Quality cost analysis: Benefits and risks." Software QA, vol. 3, #1, p. 23.

Kaner, C. (1996b) "Software negligence and testing coverage." Proceedings of STAR 96 (Fifth
International Conference on Software Testing, Analysis, and Review, Orlando, FL, May 16, 1996, p. 313.
An earlier version of this paper appeared in Software QA Quarterly, Volume 2, #2, 1995, p. 18.

Kaner, C. (1996c) "Negotiating testing resources: A collaborative approach." Presented at Software
Quality Week, San Francisco, CA, May, 1996.

Kaner, C. & Pels, D. (1997) “Software customer dissatisfaction.” Software QA, vol. 4, #3, p. 24.

Kit, E. (1995) Software Testing in the Real World. ACM Press: Addison-Wesley.

Lawrence, B. (1997, April) “Requirements happen.” American Programmer, vol. 10, #4, p. 3.

Marick, B. (1997) “Classic testing mistakes.” Proceedings of STAR 97 (Sixth International Conference on
Software Testing, Analysis, and Review, San Jose, CA., May 7, 1997, p. 677.

Myers, G.J. (1979) The Art of Software Testing. Wiley.

National Conference of Commissioners on Uniform State Laws (1997) Draft: Uniform Commercial Code
Article 2B – Licenses: With Prefatory Note and Comments. Available at
www.law.upenn.edu/library/ulc/ulc.htm in the Article 2B section, under the name 1997 Annual Meeting.

Nimmer, R. (1997) Issues Paper: UCC Article 2B – Licenses. Distributed to the National Conference of
Commissioners on Uniform State Laws for their Annual Meeting, July 25 – August 1, 1997, Sacramento,
CA.

Copyright (c) 1997-1999 Cem Kaner. All Rights Reserved. 230

Copyright (c) 1997-1999 Cem Kaner. All Rights Reserved. 231

1.

Cem Kaner, Ph.D., J.D. P.O. Box 1200
Law Office of Cem Kaner Santa Clara, CA 95052
kaner@kaner.com 408-244-7000

SOFTWARE NEGLIGENCE AND TESTING COVERAGE1

Published in the Proceedings, STAR 96 (Fifth International Conference on Software Testing,
Analysis, and Review), Orlando, Florida, May 16, 1996, p. 313.

Copyright © Cem Kaner, 1996. All Rights Reserved.

Several months ago, a respected member of the software quality community posed the
following argument to me:

A program fails in the field, and someone dies. This leads to a trial. When the QA
manager takes the stand, the plaintiff’s lawyer brings out three facts:

1. The failure occurred when the program reached a specific line of code.

2. That line had never been tested, and that’s why the bug had not been found
before the product was released.

3. A coverage monitor was available. This is a tool that allows the tester to
determine which lines of code have not yet been tested. Had the QA manager
used the tool, and tested to a level of complete coverage (all lines tested), this
bug would have been found, and the victim would be alive today.

Therefore, the lawyer has proved that the company was negligent and the victim’s
family will win the lawsuit.

The question is, what’s wrong with this argument? Anything? After all, the company had a
well-understood tool readily available and if they had only used it, someone would not have
died. How could the company not be liable for negligence?

OVERVIEW
This presentation explores the legal concept of negligence and the technical concept of
coverage. The article advances several related propositions:

Coverage

1. The phrase, complete coverage, is misleading. This “completeness” is measured only
relative to a specific population of possible test cases, such as lines of code, branches, n-
length sub-paths, predicates, etc. Even if you achieve complete coverage for a given
population of tests (such as, all lines of code tested), you have not done complete, or
even adequate, testing.

1
 Portions of this paper were originally published in C. Kaner, “Software Negligence & Testing Coverage”,

Software QA Quarterly, Vol. 2, #2, p. 18, 1995.

Copyright (c) 1997-1999 Cem Kaner. All Rights Reserved. 232

2. We can and should expand the list of populations of possible test cases. We can measure
coverage against each of these populations. The decision as to whether to try for 1%, 10%,
50% or 100% coverage against any given population is non-obvious. It involves tradeoffs base
on thoughtful judgment.

Negligence
3. Negligence liability attaches when injury or loss is caused by a failure to satisfy a duty that

was imposed by law, as a matter of public policy. So the question of whether or not it is
negligent to fail to test every line of code turns into a question of whether the company had a
public duty to test every line of code.

4. The nature of the duty involved depends on the role of the company in the development and
release of the program.

〈 A company that publishes a software product has a duty to take reasonable measures to
ensure that its products are safe.

〈 A company that sells software development services might have a duty to its client to
deliver a program that is reasonably competently coded and tested.

〈 A company that acts as an independent test laboratory might owe a duty of competent
testing and reporting to the client or to the public.

5. In any of these three cases, it is not obvious whether failure to achieve 100% line coverage is
negligent. The plaintiff will have to prove that the tradeoff made by the software company
was unreasonable.

WHAT IS NEGLIGENCE?
I’ll start by considering the situation of the software developer/publisher. This provides the room to
explore the coverage issues that are the focus of this paper. The situations of the service providers are
of independent interest to the testing community and so will also be considered below.

Under negligence law, software development companies must not release products that pose an
unreasonable risk of personal injury or property damage.1 An injured customer can sue your
company for negligence if your company did not take reasonable measures to ensure that the product
was safe.

Reasonable measures are those measures that a reasonable, cautious company would take to protect the
safety of its customers. How do we determine whether a company has taken reasonable measures? One
traditional approach in law involves a simple cost-benefit analysis. This was expressed as a formula by
Judge Learned Hand in the classic case of United States v. Carroll Towing Co.:2

1
 Note the restriction on negligence suits. Most lawsuits over defective software are for breach of contract or fraud,

partially because they don’t involve personal injury or property damage.
2
 Federal Reporter, Second Series, volume 159, page 169 (United States Court of Appeals, 2nd Circuit, 1947); for a

more recent discussion see W. Landes and R. Posner, The Economic Structure of Tort Law, Harvard University Press,
1987.

Copyright (c) 1997-1999 Cem Kaner. All Rights Reserved. 233

Let B be the burden (expense) of preventing a potential accident.

Let L be the severity of the loss if the accident occurs.
1

Let P be the probability of the accident.

Then failure to attempt to prevent a potential accident is unreasonable if

 B < P x L.

For example, suppose that a software error will cause a total of $1,000,000 in damage to your
customers. If you could prevent this by spending less than $1,000,000, but don’t, you are negligent. If
prevention would cost more than $1,000,000, and you don’t spend the money, you are not negligent.

In retrospect, after an accident has occurred, now that we know that there is an error and what it is,
it will almost always look cheaper to have fixed the bug and prevented the accident. But if the
company didn’t know about this bug when it released the program, our calculations should include
the cost of finding the bug. What would it have cost to make the testing process thorough enough that
you would have found this bug during testing?

For example, if a bug in line 7000 crashes the program, B would not be the cost of adding one test
case that miraculously checks this line (plus the cost of fixing the line). B would be

〈 the cost of strengthening the testing so that line 7000’s bug is found in the normal course of
testing, or

〈 the cost of changing the design and programming practices in a way that would have prevente
this bug (and others like it) in the first place.

Coming back to the coverage question, it seems clear that you can prevent the crash-on-line-7000
bug by making sure that you at least execute every line in the program. This is line coverage.

Line coverage measures the number / percentage of lines of code that have been executed. But some
lines contain branches—the line tests a variable and does different things depending on the
variable’s value. To achieve complete branch coverage, you check each line, and each branch on
multi-branch lines. To achieve complete path coverage, you must test every path through the
program, an impossible task.2

The argument made at the start of this article would have us estimate B as the cost of achieving
complete line coverage. Is that the right estimate of what it would cost a reasonable software
company to find this bug? I don’t think so.

Line coverage is just one narrow type of coverage of the program. Yes, complete line coverage would
catch a syntax error on line 7000 that crashes the program, but what about all the other bugs that
wouldn’t show up under this simple testing? Suppose that it would cost an extra $50,000 to achieve
complete line coverage. If you had an extra $50,000 to spend on testing, is line coverage what you
would spend it on? Probably not.

Most traditional coverage measures look at the simplest building blocks of the program (lines of code)
and the flow of control from one line to the next. These are easy and obvious measures to create, but they
can miss important bugs.

1
 See C. Kaner “Quality Cost Analysis: Benefits and Risks” Software QA, Vol. 3, No. 1, p. 23, 1996. The amount, P x L ,

is an estimate of the External Failure Costs associated with this potential accident. Note that there are two different
estimates of an external failure cost. You can estimate the amount it will cost your company if the failure occurs, or yo
can estimate how much it will cost your customers. Most cost-of-quality analyses will look at your company’s costs. In
negligence cases, judges and juries look at customers’ losses.
2 G. Myers, The Art of Software Testing, Wiley, 1979.

Copyright (c) 1997-1999 Cem Kaner. All Rights Reserved. 234

A great risk of a measurement strategy is that it is too tempting to pick a few convenient measures and
then ignore anything else that is more subtle or harder to measure. When people talk of complete
coverage or 100% coverage, they are using terribly misleading language. Many bugs will not be detected
even if there is complete line coverage, complete branch coverage, or even if there were complete path
coverage.

If you spend all of your extra money trying to achieve complete line coverage, you are spending none of
your extra money looking for the many bugs that won’t show up in the simple tests that can let you
achieve line coverage quickly. Here are some examples:

〈 A key characteristic of object-oriented programming is that each object can deal with any type of
data (integer, real, string, etc.) that you pass to it. Suppose that you pass data to an object that it
wasn’t designed to accept. The program might crash or corrupt memory when it tries to deal with
it.. Note that you won’t run into this problem by checking every line of code, because the failure is
that the program doesn’t expect this situation, therefore it supplies no relevant lines for you to test

There is an identifiable population of tests that can reveal this type of problem. If you pass every
type of data to every object in your product, you will find every error that involves an object that
doesn’t properly handle a type of data that is passed to it. You can count the number of possible
tests involved here, and you can track the number you’ve actually run. Therefore, we can make a
coverage measure here.

〈 A Windows program might fail when printing.1 You achieve complete coverage of printer
compatibility tests (across printers) if you use the set of all Windows-supported printers, using all
Windows printer drivers available for each of these printers. These drivers are part of the operatin
system, not part of your program, but your program can fail or cause a system failure when
working with them. The critical test case is not whether a particular line of code is tested, but
whether it is tested in conjunction with a specific driver.

〈 Suppose that you test a desktop publishing program. One effective way to find bugs and usability
failures is to use the program to create interesting documents. This approach is particularly
effective if you use a stack of existing documents and try to make exact copies of them with your
program. To create your stack, perhaps you’ll use all the sample files and examples that come with
PageMaker, Quark, FrameMaker, and one or two other desktop publishers. In this case, you
achieve complete coverage if you recreate all of the samples provided by all available desktop
publishers.

The Appendix to this article lists 101 measures of testing coverage. Line coverage is just one of many. There
are too many possible tests for you to achieve complete coverage for every type of coverage in the list.

1
 I’ve been asked by software quality workers who are not familiar with mass-market issues why anyone would want to

spend much effort on printer testing. Here is some relevant information. The technical support costs associated with printe
incompatibilities are significant for several mass-market software companies. For example, at a presentation on “Wizards”
the OpCon West 96 Customer Service & Support Conference, March 18, 1996, Keith Sturdivant reported that print/merge
calls on Microsoft Word had been averaging over 50 support-minutes per caller until Microsoft developed a special print
troubleshooting Wizard. In my experience at other companies, this is not a surprisingly high number. In “Benchmark Repo
Technical Support Cost Ratios,” Soft letter, Vol. 10, #10, p. 1, September 21, 1993, Jeffrey Tarter reported an average tech
support call cost of $3 per minute. At this rate, the 50 minute printer call cost is $150 – for a product that is bundled free w
a computer or sold at retail for as little as $99. The cost and aggravation to the customers is also very high.

Copyright (c) 1997-1999 Cem Kaner. All Rights Reserved. 235

I hope that the list helps you make priority decisions consciously and communicate them explicitly. The
tradeoffs will differ across applications—in one case you might set an objective of 85% for line coverage,1

100% for data coverage, but only 5% for printer / driver compatibility coverage. For a different program
whose primary benefit is beautiful output, you would assign printer coverage a much higher weight.

If you had an extra $50,000 to spend, would you focus your efforts on increasing line coverage or
increasing some of the others? Surely, the answer should depend on the nature of your application, the
types of risks involved in your application, and the probable effectiveness of the different types of tests.
The most desirable strategy will be the one that is most likely to find the most bugs, or to find the most
serious bugs.

The legal (negligence) test for the coverage tradeoffs that you make is reasonability. No matter what
tradeoffs you make, and no matter how much money you spend on testing, you will miss some bugs.2

Whether or not those bugs are products of negligence in the testing process depends on your
reasonability, not on your luck in selecting just the right tests.

 Your task is to prioritize among tests in the way that a reasonably careful company would—and to me
that means to select the test strategy that you rationally believe is the most likely to find the most bugs
or the most serious bugs.

There is no magic talisman in coverage that you can use blindly and be free of negligence liability. Being
reasonable in your efforts to safeguard your customer requires careful thought and analysis. Achieving
complete (line, branch, whatever) coverage will not insulate you. The plaintiff’s attorney will just ask
you why you spent all that money on line coverage, at the expense of, say, interrupt coverage. Try to
assign your weights sensibly, in a way that you can explain and justify.

The same reasoning applies to customer satisfaction in general. If your approach will control the risks,
you’ve done your job. But if you can identify gaps that leave an unreasonable degree of risk to customer
safety or satisfaction, there is no reasonable alternative to addressing those risks.

As a final note, I hope that you’ll take a moment to appreciate the richness, multidimensionality, and
complexity of what we do as testers. Sometimes we hear that only programmers should be testers, or
that all testing should be driven from a knowledge of the workings of the code. This list highlights the
degree to which that view is mistaken. Programming skills and code knowledge are essential for glass
box testing tasks, but as we explore the full range of black box testing approaches, we find that we also
need skills and knowledge in:

〈 the application itself (subject matter experts)

〈 safety and hazard analysis

〈 usability, task analysis, human error (human factors analysis)

〈 hardware (modems, printers, etc.)

〈 customer relations.

A person who has these skills but who can’t program may be an invaluable member of a black box testing
team.

1
 It can be very expensive and difficult to achieve 100% line or branch coverage. Grady reports that values of 80-85% are

reasonably achievable. R.B. Grady, Practical Software Metrics for Project Management and Process Improvement, PTR
Prentice Hall (Hewlett-Packard Professional Books), 1992, p. 171.
2
 See Chapter 2 of C. Kaner, J. Falk, and H.Q. Nguyen, Testing Computer Software (2nd. Ed.), Van Nostrand Reinhold,

1993.

Copyright (c) 1997-1999 Cem Kaner. All Rights Reserved. 236

SOFTWARE MALPRACTICE
Malpractice? Can you be sued for malpractice? I’ve heard alarmist talk about software malpractice – the
main point of this section is to say, “Calm down.”

A person commits malpractice if she provides professional services that don’t meet the level that would
be provided by a reasonable member of the profession in this community. For example, if you hire a
lawyer to draft a contract, and the lawyer makes mistakes that any reasonable lawyer would never
make, then you can sue the lawyer for malpractice.

Many people in the software community sell services rather than products. We sell our programming or
testing skills on a contract basis, doing work that is defined by our customer. What if you do a terrible
job? In any contract for services, the service provider is under a duty to perform the services in a
reasonable and workmanlike manner.1 If you hand back badly written code that has never been tested,
you might face claims for breach of contract, misrepresentation, negligence, or malpractice:

〈 You’re probably liable for breach of contract if you promised working code and you delivered
garbage.

〈 You’re probably liable for misrepresentation if you said that you knew how to write this type of
application, but you’ve never done one before.

〈 If the only harm caused by your product is economic (it cost your customer money), then there’s an
excellent chance that the courts will refuse to allow a negligence-based suit to go forward. If you di
a lousy job of programming and testing, your customer should sue you for breach of contract.2

 If the suit does go forward as a negligence suit, then your customer may have to prove that no
reasonable person would have done as bad a job as you. This population of “reasonable persons wh
sell software services” includes hobbyists, recent university graduates, high school students, and a
variety of other odd characters. Proving negligence can be a big challenge.

〈 The malpractice case is much clearer and much more dangerous. The care you took in providing
your services is compared to the level of care that is to be expected from a professional software
service provider. If your work doesn’t live up to that standard, and your customer loses money as a
result, then it doesn’t matter whether a hobbyist would have done the job more sloppily than you.
You acted as a professional. You provided sub-professional services. You lose.

There’s just a small problem in this malpractice case – what professional standards should your work be
compared to?

It’s relatively easy to compare lawyers’ work to professional standards because there are professional
standards. I belong to the California Bar. Can’t be a lawyer in California without being a member of the State
Bar. To be admitted to the Bar, I had to take a three-day exam on basic legal knowledge that every practicing
lawyer is expected to have. And I had to take another tough exam on professional responsibility – my
professional and ethical obligations to my clients and to the public. These exams illustrate a standard of
knowledge that is accepted by the entire legal community. As an attorney, I am required by my profession’s
Code of Professional Responsibility to competently represent my clients. If I fail to follow this Code, I can be

1
 This is clearly discussed in R.T. Nimmer The Law of Computer Technology: Rights, Licenses, Liabilities (2

nd
 Ed.) Warren,

Gorham & Lamont, 1992 (supplemented 1994). See Chapter 9 generally, especially section 9.16.
2
 This is a complex issue for lawyers, that probably shouldn’t be a complex issue. The new Article 2B of the Uniform

Commercial Code will clean up most or all of it by making this a clearly defined contract issue. For more on the drafting of
Article 2B, see C. Kaner, “Uniform Commercial Code Article 2B: A New Law of Software Quality,” in press, Software QA, Vol.
3, No. 2, 1996. To read the latest draft of Article 2B, check the Uniform Commercial Code Article 2B Revision Home Page, at
http://www.law.uh.edu/ucc2b.

Copyright (c) 1997-1999 Cem Kaner. All Rights Reserved. 237

We have nothing comparable in the software community. Some groups have attempted to certify
programmers but none has won general (let alone universal) acceptance. Similarly, there are no widely
accepted standards for software testers.1 There is also no enforceable code of ethics.

Someone who advertises their services in terms of an industry certification is inviting an evaluation against a
higher standard. My letterhead advertises that I am an ASQC-Certified Quality Engineer (ASQC-CQE). This
implicitly invites any (technical, rather than legal) client of mine to judge me against a standard of

1
 The American Society for Quality Control recently developed a Certification for Software Quality Engineers (CSQE). I

contributed to this effort by working in the meeting that developed the final “body of knowledge” to be used in the certificat
exam. As an ASQC-Certified Quality Engineer, I generally support the ASQC’s certification efforts, and I think that there is
genuine personal value to be gained from the study and effort required for a CSQE.

I don’t want the following comments to be taken as an attack on the CSQE designation or process. They are not an
attack. They are a statement of limitations, made by someone who was part of the process, and I am making them to help
avoid the confusion that could result in someone trying to identify the CSQE Body of Knowledge as a legally enforceable
community standard.

The CSQE Body of Knowledge questionnaire was given to a select group of people in the software community. It we
to some ASQC members (I never received one, even though I am moderately active in ASQC, a member of ASQC’s
software division, and reasonably active in the software testing community. Nor did Hung Nguyen, even though he co-
authored Testing Computer Software, is a Senior Member of the ASQC, and is very active in the San Francisco ASQC
chapter.) My understanding is that it was sent to a random sample of ASQC members. The questionnaire also went to
several SPIN members and to attendees at one or two testing-related conferences. It missed several societies. For examp
it never went to the Association for Computing Machinery membership, even though this is the largest computer-related
professional society in the US. It never went to the Human Factors & Ergonomics Society, even though that organization
includes many members who are directly involved in software quality (designing, testing and evaluating software user
interfaces for safety, usability, etc.) I know several software testers who are not active in ASQC.

Survey results were contained in the working document, The Profession of Software Quality Engineering: Results from
a Survey of Tasks and Knowledge Areas for the Software Quality Engineer – A Job Analysis Conducted on Behalf of the
American Society for Quality Control by Scott Wesley, Ph.D. and Michael Rosenfeld, Ph.D. of Educational Testing Services
This document notes than only 18.1% of the recipients of the survey responded, compared to 36%, 38%, and 48% respon
rates for surveys for other ASQC designations.

The survey published several types of demographic information about respondents. It didn’t analyze the responses i
terms of software market segment, but my sense from looking at the other data was that relatively few came from the mas
market software industry. It also appeared that relatively few people from the mass-market software industry contributed to
the development of the questionnaire. I have limited expertise in some other areas, so I am less confident in identifying ot
software markets as under-represented.

My sense is that software development and testing are not homogenous. I believe that we approach problems
differently for mass-market consumer software than for life-critical diagnostic systems or for life-critical embedded systems
The differences are not merely in thoroughness or degree to which they are systematic. The approaches are qualitatively
different. For example, some groups in Microsoft have what looks like a mature development and testing process, but it is
an SEI-mature process. The ASQC-Certified Quality Engineer approach recognizes the diversity of the Quality Control
community across industries. The ASQC-Certified Software Quality Engineer approach does not appear to recognize this
diversity. The ASQC-CSQE Body of Knowledge appears to treat the field as homogenous.

The ASQC-CQE Body of Knowledge requires background knowledge in the history of the quality control movement.
The ASQC-CSQE Body of Knowledge appears much less scholarly to me. Couple this with a lack of university training
available for software quality, and I question the degree to which we can expect as a matter of law (for malpractice purpos
that the typical software quality worker would have a thoughtful, historical insight into the techniques and approaches that
she uses.

In sum, I believe that the CSQE Body of Knowledge represents an interesting body of knowledge to study. I believe
that it would be good for an experienced member of the community to know the material covered by the CSQE. And I belie
that a CSQE designation tells me a fair bit about the level of knowledge and commitment of a job candidate or coworker. B
I do not believe that it is based on a representative study of the software quality community’s practices and I do not believ
that it can or should serve as a standard that is useful as evidence of community norms.

As noted in the main body, however, if someone says they are a CSQE in their advertising, they are representing
themselves as knowledgeable of the CSQE Body of Knowledge and this invites comparison of that person’s efforts to those
one would expect from a CSQE.

Copyright (c) 1997-1999 Cem Kaner. All Rights Reserved. 238

knowledge that one would expect from an ASQC-CQE, which is a more precisely defined standard
than that of a “reasonable person who does quality-related work.” It therefore makes a claim of
malpractice easier to argue (against me) in my case than in the general case. You can choose to
expose yourself to that risk, or you can choose not to.

NEGLIGENT CERTIFICATION
An independent software testing company can get itself into all sorts of interesting trouble. Under the
right circumstances, the lab can get itself into the same trouble as any other software service provider
(see the discussions of product development negligence and malpractice above). In addition, let me
mention two other well known court cases:

〈 Hanberry v. Hearst Corporation:1 A consumer sued Good Housekeeping magazine for negligent
endorsement of a defectively designed shoe.

〈 Hempstead v. General Fire Extinguisher Corporation:2 A worker injured by the explosion of a
fire extinguisher sued Underwriters’ Laboratories for negligence in inspecting, testing, and
approving the design of the extinguisher.

In both cases, the public was told that this was a product that had been evaluated and approved.
The organization that had allegedly evaluated and approved the product was sued.

If the public is told that, because it was you who tested the product, the public should believe that a
product that you tested is reliable and safe, then that product had better be reliable and safe.
Otherwise, cranky and injured customers will come to your door too, saying that they bought the
product because they trusted your recommendation.

APPENDIX: THE MANY TYPES OF TESTING COVERAGE
This appendix lists 101 coverage measures. Coverage measures the amount of testing done of a
certain type. Because testing is done to find bugs, coverage is also a measure of your effort to detect
a certain class of potential errors. For example, 100% line coverage doesn’t just mean that you’ve
executed every line of code; it also means that you’ve tested for every bug that can be revealed by
simple execution of a line of code.

Please note that this list is far from complete. For example, it doesn’t adequately cover safety
issues.3 Nor does it convey the richness of the tests and test strategies that you can derive from
customer complaints and surveys and from tests involving controlled customer observation. And you
will add measures as you analyze the application that you’re testing.

1. Line coverage. Test every line of code (Or Statement coverage: test every statement).

2. Branch coverage. Test every line, and every branch on multi-branch lines.

3. N-length sub-path coverage. Test every sub-path through the program of length N. For example, in a
10,000 line program, test every possible 10-line sequence of execution.

1
 California Appellate Reports, 2

nd
 Series, Vol. 276, p. 680 (California Court of Appeal, 1969).

2 Federal Supplement, Vol. 269, p. 109 (United States District Court for the District of Delaware, applying Virginia law
1969).
3
 N. Leveson, Safeware: System Safety and Computers, Addison-Wesley, 1995.

Copyright (c) 1997-1999 Cem Kaner. All Rights Reserved. 239

4. Path coverage. Test every path through the program, from entry to exit. The number of paths
is impossibly large to test.1

5. Multicondition or predicate coverage.2 Force every logical operand to take every possible
value. Two different conditions within the same test may result in the same branch, and so branch
coverage would only require the testing of one of them.

6. Trigger every assertion check in the program. Use impossible data if necessary.

7. Loop coverage. “Detect bugs that exhibit themselves only when a loop is executed more than
once.”3

8. Every module, object, component, tool, subsystem, etc. This seems obvious until you realize
that many programs rely on off-the-shelf components. The programming staff doesn’t have the
source code to these components, so measuring line coverage is impossible. At a minimum (which is
what is measured here), you need a list of all these components and test cases that exercise each on
at least once.

9. Fuzzy decision coverage. If the program makes heuristically-based or similarity-based
decisions, and uses comparison rules or data sets that evolve over time, check every rule several
times over the course of training.

10. Relational coverage. “Checks whether the subsystem has been exercised in a way that tends
to detect off-by-one errors” such as errors caused by using < instead of <=.4 This coverage includes:

〈 Every boundary on every input variable.5

〈 Every boundary on every output variable.

〈 Every boundary on every variable used in intermediate calculations.

11. Data coverage. At least one test case for each data item / variable / field in the program.

12. Constraints among variables: Let X and Y be two variables in the program. X and Y
constrain each other if the value of one restricts the values the other can take. For example, if X is a
transaction date and Y is the transaction’s confirmation date, Y can’t occur before X.

13. Each appearance of a variable. Suppose that you can enter a value for X on three different
data entry screens, the value of X is displayed on another two screens, and it is printed in five
reports. Change X at each data entry screen and check the effect everywhere else X appears.

14. Every type of data sent to every object. A key characteristic of object-oriented programming
is that each object can handle any type of data (integer, real, string, etc.) that you pass to it. So, pas
every conceivable type of data to every object.

15. Handling of every potential data conflict. For example, in an appointment calendaring program,
what happens if the user tries to schedule two appointments at the same date and time?

1 See G. Myers, The Art of Software Testing, Wiley, 1979, and Chapter 2 of C. Kaner, J. Falk, and H.Q. Nguyen,
Testing Computer Software (2nd. Ed.), Van Nostrand Reinhold, 1993.
2
 G. Myers, The Art of Software Testing, Wiley, 1979 (multicondition coverage) and B. Beizer, Software Testing

Techniques (2nd Ed.), Van Nostrand Reinhold, 1990.
3
 B. Marick, The Craft of Software Testing, Prentice Hall, 1995, p. 146.

4
 B. Marick, The Craft of Software Testing, Prentice Hall, 1995, p. 147.

5 Boundaries are classically described in numeric terms, but any change-point in a program can be a boundary. If t
program works one way on one side of the change-point and differently on the other side, what does it matter whet
the change-point is a number, a state variable, an amount of disk space or available memory, or a change in a
document from one typeface to another, etc.? See C. Kaner, J. Falk, and H.Q. Nguyen, Testing Computer Software
(2nd. Ed.), Van Nostrand Reinhold, 1993, p. 399-401.

Copyright (c) 1997-1999 Cem Kaner. All Rights Reserved. 240

16. Handling of every error state. Put the program into the error state, check for effects on the
stack, available memory, handling of keyboard input. Failure to handle user errors well is an
important problem, partially because about 90% of industrial accidents are blamed on human error
or risk-taking.1 Under the legal doctrine of foreseeable misuse,2 the manufacturer is liable in
negligence if it fails to protect the customer from the consequences of a reasonably foreseeable misus
of the product.

17. Every complexity / maintainability metric against every module, object, subsystem, etc.
There are many such measures. Jones3 lists 20 of them.4 People sometimes ask whether any of these
statistics are grounded in a theory of measurement or have practical value.5 But it is clear that, in
practice, some organizations find them an effective tool for highlighting code that needs further
investigation and might need redesign.6

18. Conformity of every module, subsystem, etc. against every corporate coding standard.
Several companies believe that it is useful to measure characteristics of the code, such as total lines
per module, ratio of lines of comments to lines of code, frequency of occurrence of certain types of
statements, etc. A module that doesn’t fall within the “normal” range might be summarily rejected
(bad idea) or re-examined to see if there’s a better way to design this part of the program.

19. Table-driven code. The table is a list of addresses or pointers or names of modules. In a
traditional CASE statement, the program branches to one of several places depending on the value o
an expression. In the table-driven equivalent, the program would branch to the place specified in,
say, location 23 of the table. The table is probably in a separate data file that can vary from day to
day or from installation to installation. By modifying the table, you can radically change the control
flow of the program without recompiling or relinking the code. Some programs drive a great deal of
their control flow this way, using several tables. Coverage measures? Some examples:

〈 check that every expression selects the correct table element

〈 check that the program correctly jumps or calls through every table element

〈 check that every address or pointer that is available to be loaded into these tables is vali
(no jumps to impossible places in memory, or to a routine whose starting address has
changed)

〈 check the validity of every table that is loaded at any customer site.

20. Every interrupt. An interrupt is a special signal that causes the computer to stop the program in
progress and branch to an interrupt handling routine. Later, the program restarts from where it was
interrupted. Interrupts might be triggered by hardware events (I/O or signals from the clock that a
specified interval has elapsed) or software (such as error traps). Generate every type of interrupt in
every way possible to trigger that interrupt.

1 B.S. Dhillon, Human Reliability With Human Factors, Pergamon Press, 1986, p. 153.
2
 This doctrine is cleanly explained in S. Brown (Ed.) The Product Liability Handbook: Prevention, Risk, Consequence

and Forensics of Product Failure, Van Nostrand Reinhold, 1991, pp. 18-19.
3
 C. Jones, Applied Software Measurement, McGraw-Hill, 1991, p. 238-341.

4
 B. Beizer, Software Testing Techniques (2nd Ed.), Van Nostrand Reinhold, 1990, provides a sympathetic

introduction to these measures. R.L. Glass, Building Quality Software, Prentice Hall, 1992, and R.B. Grady, D.L.
Caswell, Software Metrics: Establishing a Company-Wide Program, Prentice Hall, 1987, provide valuable perspective
5 For example, C. Kaner, J. Falk, and H.Q. Nguyen, Testing Computer Software (2nd Ed.), Van Nostrand Reinhold,
1993, pp. 47-48; also R.L. Glass, Building Quality Software, Prentice Hall, 1992, “Software metrics to date have not
produced any software quality results which are useful in practice” p. 303.
6 R.B. Grady, D.L. Caswell, Software Metrics: Establishing a Company-Wide Program, Prentice Hall, 1987 and R.B.
Grady, Practical Software Metrics for Project Management and Process Improvement, PTR Prentice Hall (Hewlett-
Packard Professional Books), 1992, p. 87-90.

Copyright (c) 1997-1999 Cem Kaner. All Rights Reserved. 241

21) Every interrupt at every task, module, object, or even every line. The interrupt handling routine
might change state variables, load data, use or shut down a peripheral device, or affect memory in way
that could be visible to the rest of the program. The interrupt can happen at any time—between any
two lines, or when any module is being executed. The program may fail if the interrupt is handled at a
specific time. (Example: what if the program branches to handle an interrupt while it’s in the middle o
writing to the disk drive?)

 The number of test cases here is huge, but that doesn’t mean you don’t have to think about this type of
testing. This is path testing through the eyes of the processor (which asks, “What instruction do I
execute next?” and doesn’t care whether the instruction comes from the mainline code or from an
interrupt handler) rather than path testing through the eyes of the reader of the mainline code.
Especially in programs that have global state variables, interrupts at unexpected times can lead to ver
odd results.

22) Every anticipated or potential race.1 Imagine two events, A and B . Both will occur, but the
program is designed under the assumption that A will always precede B . This sets up a race between A
and B —if B ever precedes A, the program will probably fail. To achieve race coverage, you must
identify every potential race condition and then find ways, using random data or systematic test case
selection, to attempt to drive B to precede A in each case.

 Races can be subtle. Suppose that you can enter a value for a data item on two different data entry
screens. User 1 begins to edit a record, through the first screen. In the process, the program locks the
record in Table 1. User 2 opens the second screen, which calls up a record in a different table, Table 2.
The program is written to automatically update the corresponding record in the Table 1 when User 2
finishes data entry. Now, suppose that User 2 finishes before User 1. Table 2 has been updated, but th
attempt to synchronize Table 1 and Table 2 fails. What happens at the time of failure, or later if the
corresponding records in Table 1 and 2 stay out of synch?

23) Every time-slice setting. In some systems, you can control the grain of switching between tasks or
processes. The size of the time quantum that you choose can make race bugs, time-outs, interrupt-
related problems, and other time-related problems more or less likely. Of course, coverage is an difficul
problem here because you aren’t just varying time-slice settings through every possible value. You also
have to decide which tests to run under each setting. Given a planned set of test cases per setting, the
coverage measure looks at the number of settings you’ve covered.

24) Varied levels of background activity. In a multiprocessing system, tie up the processor with
competing, irrelevant background tasks. Look for effects on races and interrupt handling. Similar to
time-slices, your coverage analysis must specify

¤ categories of levels of background activity (figure out something that makes sense) and

¤ all timing-sensitive testing opportunities (races, interrupts, etc.).

25) Each processor type and speed. Which processor chips do you test under? What tests do you run
under each processor? You are looking for:

¤ speed effects, like the ones you look for with background activity testing, and

¤ consequences of processors’ different memory management rules, and

¤ floating point operations, and

¤ any processor-version-dependent problems that you can learn about.

26) Every opportunity for file / record / field locking.

1
 Here as in many other areas, see Appendix 1 of C. Kaner, J. Falk, and H.Q. Nguyen, Testing Computer Software (2nd Ed.),

Van Nostrand Reinhold, 1993 for a list and discussion of several hundred types of bugs, including interrupt-related, race-
condition-related, etc.

Copyright (c) 1997-1999 Cem Kaner. All Rights Reserved. 242

27) Every dependency on the locked (or unlocked) state of a file, record or field.

28) Every opportunity for contention for devices or resources.

29) Performance of every module / task / object. Test the performance of a module then retest it
during the next cycle of testing. If the performance has changed significantly, you are either looking
at the effect of a performance-significant redesign or at a symptom of a new bug.

30) Free memory / available resources / available stack space at every line or on entry into and
exit out of every module or object.

31) Execute every line (branch, etc.) under the debug version of the operating system. This
shows illegal or problematic calls to the operating system.

32) Vary the location of every file. What happens if you install or move one of the program’s
component, control, initialization or data files to a different directory or drive or to another compute
on the network?

33) Check the release disks for the presence of every file. It’s amazing how often a file vanishes. If
you ship the product on different media, check for all files on all media.

34) Every embedded string in the program. Use a utility to locate embedded strings. Then find a way
to make the program display each string.

Operation of every function / feature / data handling operation under:

35) Every program preference setting.

36) Every character set, code page setting, or country code setting.

37) The presence of every memory resident utility (inits, TSRs).

38) Each operating system version.

39) Each distinct level of multi-user operation.

40) Each network type and version.

41) Each level of available RAM.

42) Each type / setting of virtual memory management.

43) Compatibility with every previous version of the program.

44) Ability to read every type of data available in every readable input file format. If a file
format is subject to subtle variations (e.g. CGM) or has several sub-types (e.g. TIFF) or versions (e.g
dBASE), test each one.

45) Write every type of data to every available output file format. Again, beware of subtle
variations in file formats—if you’re writing a CGM file, full coverage would require you to test your
program’s output’s readability by every one of the main programs that read CGM files.

46) Every typeface supplied with the product. Check all characters in all sizes and styles. If your
program adds typefaces to a collection of fonts that are available to several other programs, check
compatibility with the other programs (nonstandard typefaces will crash some programs).

47) Every type of typeface compatible with the program. For example, you might test the program
with (many different) TrueType and Postscript typefaces, and fixed-sized bitmap fonts.

48) Every piece of clip art in the product. Test each with this program. Test each with other programs that
should be able to read this type of art.

Copyright (c) 1997-1999 Cem Kaner. All Rights Reserved. 243

49. Every sound / animation provided with the product. Play them all under different device (e.g.
sound) drivers / devices. Check compatibility with other programs that should be able to play this
clip-content.

50. Every supplied (or constructible) script to drive other machines / software (e.g. macros) / BBS’s
and information services (communications scripts).

51. All commands available in a supplied communications protocol.

52. Recognized characteristics. For example, every speaker’s voice characteristics (for voice
recognition software) or writer’s handwriting characteristics (handwriting recognition software) or
every typeface (OCR software).

53. Every type of keyboard and keyboard driver.

54. Every type of pointing device and driver at every resolution level and ballistic setting.

55. Every output feature with every sound card and associated drivers.

56. Every output feature with every type of printer and associated drivers at every resolution
level.

57. Every output feature with every type of video card and associated drivers at every
resolution level.

58. Every output feature with every type of terminal and associated protocols.

59. Every output feature with every type of video monitor and monitor-specific drivers at every
resolution level.

60. Every color shade displayed or printed to every color output device (video card / monitor /
printer / etc.) and associated drivers at every resolution level. And check the conversion to
grey scale or black and white.

61. Every color shade readable or scannable from each type of color input device at every
resolution level.

62. Every possible feature interaction between video card type and resolution, pointing device
type and resolution, printer type and resolution, and memory level. This may seem
excessively complex, but I’ve seen crash bugs that occur only under the pairing of specific printer
and video drivers at a high resolution setting. Other crashes required pairing of a specific mouse an
printer driver, pairing of mouse and video driver, and a combination of mouse driver plus video
driver plus ballistic setting.

63. Every type of CD-ROM drive, connected to every type of port (serial / parallel / SCSI) and
associated drivers.

64. Every type of writable disk drive / port / associated driver. Don’t forget the fun you can have
with removable drives or disks.

65. Compatibility with every type of disk compression software. Check error handling for every
type of disk error, such as full disk.

66. Every voltage level from analog input devices.

67. Every voltage level to analog output devices.

68. Every type of modem and associated drivers.

69. Every FAX command (send and receive operations) for every type of FAX card under every protocol
and driver.

Copyright (c) 1997-1999 Cem Kaner. All Rights Reserved. 244

70. Every type of connection of the computer to the telephone line (direct, via PBX, etc.; digita
vs. analog connection and signaling); test every phone control command under every
telephone control driver.

71. Tolerance of every type of telephone line noise and regional variation (including
variations that are out of spec) in telephone signaling (intensity, frequency, timing, other
characteristics of ring / busy / etc. tones).

72. Every variation in telephone dialing plans.

73. Every possible keyboard combination. Sometimes you’ll find trap doors that the programmer
used as hotkeys to call up debugging tools; these hotkeys may crash a debuggerless program. Other
times, you’ll discover an Easter Egg (an undocumented, probably unauthorized, and possibly
embarrassing feature). The broader coverage measure is every possible keyboard
combination at every error message and every data entry point. You’ll often find different
bugs when checking different keys in response to different error messages.

74. Recovery from every potential type of equipment failure. Full coverage includes each type of
equipment, each driver, and each error state. For example, test the program’s ability to recover from
full disk errors on writable disks. Include floppies, hard drives, cartridge drives, optical drives, etc.
Include the various connections to the drive, such as IDE, SCSI, MFM, parallel port, and serial
connections, because these will probably involve different drivers.

75. Function equivalence. For each mathematical function, check the output against a known good
implementation of the function in a different program. Complete coverage involves equivalence
testing of all testable functions across all possible input values.

76. Zero handling. For each mathematical function, test when every input value, intermediate
variable, or output variable is zero or near-zero. Look for severe rounding errors or divide-by-zero
errors.

77. Accuracy of every graph, across the full range of graphable values. Include values that force shift
in the scale.

78. Accuracy of every report. Look at the correctness of every value, the formatting of every page, and
the correctness of the selection of records used in each report.

79. Accuracy of every message.

80. Accuracy of every screen.

81. Accuracy of every word and illustration in the manual.

82. Accuracy of every fact or statement in every data file provided with the product.

83. Accuracy of every word and illustration in the on-line help.

84. Every jump, search term, or other means of navigation through the on-line help.

85. Check for every type of virus / worm that could ship with the program.

86. Every possible kind of security violation of the program, or of the system while using the
program.

87. Check for copyright permissions for every statement, picture, sound clip, or other creation
provided with the program.

88. Verification of the program against every program requirement and published specification.

Copyright (c) 1997-1999 Cem Kaner. All Rights Reserved. 245

89. Verification of the program against user scenarios. Use the program to do real tasks that
are challenging and well-specified. For example, create key reports, pictures, page layouts, or
other documents events to match ones that have been featured by competitive programs as
interesting output or applications.

90. Verification against every regulation (IRS, SEC, FDA, etc.) that applies to the data or
procedures of the program.

Usability tests of:

91. Every feature / function of the program.

92. Every part of the manual.

93. Every error message.

94. Every on-line help topic.

95. Every graph or report provided by the program.

Localizability / localization tests:

96. Every string. Check program’s ability to display and use this string if it is modified by changing
the length, using high or low ASCII characters, different capitalization rules, etc.

97. Compatibility with text handling algorithms under other languages (sorting, spell
checking, hyphenating, etc.)

98. Every date, number and measure in the program.

99. Hardware and drivers, operating system versions, and memory-resident programs that
are popular in other countries.

100. Every input format, import format, output format, or export format that would be
commonly used in programs that are popular in other countries.

101. Cross-cultural appraisal of the meaning and propriety of every string and graphic shipped
with the program.

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 246

Notes

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 247

Law of Software Quality

Section 13.

Strict Products Liability

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 248

Strict Products Liability

A company is liable to a victim if it sells a
product that is:

⌧defective, and

⌧unreasonably dangerous, and

⌧the cause of personal injury or
property damage

A design may be unreasonably
dangerous if it fails to meet the safety
expectations of a reasonable consumer.

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 249

Law of Software Quality

Section 14.

Malpractice

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 250

Malpractice

Malpractice is the failure to exercise the
skill and knowledge normally possessed
by members of a profession or trade.

⌧Programmer malpractice?

Getting licensed means that we will
finally qualify to be sued in malpractice.

⌧Professional advice malpractice?

The more your advertising & docs
make a customer think she can replace
a professional with your product, the
better her chances of success in a
malpractice suit if your program gives
bad advice.

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 251

Malpractice

Software Developers

When we develop custom software, as
service providers, we are required to take
reasonable care in the provision of our
services.

Is our required level of care
determined by professional standards
(malpractice liability) or by the ordinary
care of any reasonably prudent person?

(I think the answer is ordinary
care, not malpractice.)

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 252

Malpractice

Independent Test Labs

⌧Test labs, as service providers, are
responsible to their clients (just like
developers).

⌧The additional question that I am
posing is whether test labs might be
subject to negligence liability to end
customers?

⌧There are traps here for the unwary.

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 253

Notes

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 254

Notes

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

Copyright (c) 1999 Cem Kaner. All Rights Reserved. 255

Notes

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

