
Cem Kaner, Ph.D., J.D.
Professor
Director

Pat Bond, Ph.D.
Associate Professor

Scott Tilley, Ph.D.
Associate Professor

Mike Andrews, Ph.D.
Assistant Professor

James Whittaker, Ph.D.
Professor

MISSION

Create effective,
grounded, timely
materials to support the
teaching and self-study
of software testing,
software reliability, and
quality-related software
metrics.

Florida Institute of Technology, 150 West University Blvd, Melbourne, FL 32901

Teaching the Black Box Testing Course
Cem Kaner & Sabrina Fay

ACM SIGCSE, Norfolk, VA, March 2004 (Faculty Poster)

Software testing has traditionally received little coverage in the Computer
Science curriculum, and that is partially because of the way in which it is
often documented and taught. Test design is often presented in an
oversimplified way as a routine application of one of a small set of briefly-
defined basic techniques. Many industrial presentations (and some software
engineering texts) add extensive descriptions of reams of test-related
paperwork that "professional" testers or software engineers allegedly
generate. It's not clear that any of this carries a level of intellectual
challenge appropriate for university-level instruction.

Black box testing doesn't have to be taught as an intellectually sterile
activity that should be automated or offshored as soon as possible.

The essence of black box testing is active investigation of a product by an
outsider who is more focused on the acceptability of the product in its
usage environment than on the details of construction. Here are some of the
factors in the typical investigative context:

• The product under test is incompletely and inaccurately specified.
Even if it is well-specified with respect to some stakeholders, it misses
the perspective (and potential objections) of others. Good specs for
programmers are often weak descriptions of user intent and value (and
vice-versa) for example.

• Software has a vast array of potential problems; test techniques that
are effective at exposing one type of problem can be completely
ineffective for exposing another. For example, domain testing is
effective for exposing off-by-one errors, but worthless for uncovering
memory leaks, wild pointers, race conditions, erroneous onscreen
instructions, or clumsy user task sequencing. High-volume state-
transition testing can expose the leaks, but not the off-by-one bugs or
the user interface blunders (for which you might try user scenario
tests).

• Learning the range of possible errors involves ongoing learning about
code and its risks, the application domain and its risks, and the target
market and its risks. The tester must synthesize technological, design,
and marketing perspectives, and increase her sophistication in them,
every day. (The process of simultaneously learning more about the
product and designing tests based on the new learning is called
exploratory testing.)

• Learning the techniques is like learning the tools available in a crime lab. There are a lot
of them, some are simple, some are very fancy, they all take knowledge and skill to use
well, many of them are too expensive or time consuming to use routinely (so tradeoffs are
always necessary) and experts can figure out how to use one in a slightly new way to solve
a problem for which routine analyses don't yet exist.

Students of software testing must learn a lot of techniques, but the techniques are just tools. They
aren't enough. We see an analogy to math education--like math students, testers have to learn
techniques in terms of the problems they can be used to address, and the application of those
techniques to problems worth reasoning about. This is basic, challenging-to-teach, impossible-
to-reduce-to-simple-routine, problem-solving.

The materials here support the teaching of a course in Black Box Testing. There are about 120
hours worth of lecture notes, plus various papers, including notes on assessment.

Along with a problem-solving approach to test design and execution, we expect that the learning
objectives for many testing courses will include growth in descriptive and persuasive technical
writing (bug reports, especially, must be precise, insightful, and motivating), teamwork,
measurement theory and practice, and project estimation, scheduling and status tracking. All of
these skills are desirable throughout the software engineering and computer science curricula.

Development of this material has been significantly supported by the National Science
Foundation, grant EIA-0113539 ITR/SY+PE "Improving the Education of Software Testers" and
by Rational/IBM; Texas Instruments; Satisfice, Inc.; and the LogiGear Corporation.

Any opinions, findings and conclusions or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views of the National Science Foundation or
our other sponsors or supporters.

Cem Kaner is Professor of Software Engineering at the Florida Institute of Technology and
Director of Florida Tech's Center for Software Testing Education. Prior to joining Florida Tech,
Kaner worked as a programmer, tester, test manager, development manager, director, human
factors analyst, tech pubs manager, organization development consultant, and attorney (focused
on software-related law) in Silicon Valley. He is lead author of Testing Computer Software, of
Lessons Learned in Software Testing, and Bad Software: What To Do When Software Fails.

Sabrina Fay is a dual graduate student, studying for an M.Sc. (software engineering) at Florida
Institute of Technology (expected graduation May 2004) and an M.Sc. (instructional systems) at
Florida State University (expected graduation December 2004). She has extensive experience as
an instructional designer at Harris before coming to Florida Tech.

This poster presents a set of course notes. If the disks aren't handy,

you can find the notes at

http://www.testingeducation.org/k04/index.htm

and you can find related papers at

http://www.kaner.com/articles.html and http://www.testingeducation.org/articles/

