
Architectures of Test Automation 1

High Volume Test AutomationHigh Volume Test Automation

Cem Kaner

Professor of Software Engineering

Walter P. Bond

Associate Professor

Pat McGee

Doctoral Student

Florida Institute of Technology

October 2003

Architectures of Test Automation 2

AcknowledgementsAcknowledgements
• Many of the ideas in this presentation were initially jointly developed with Doug Hoffman,as we developed a

course on test automation architecture, and in the Los Altos Workshops on Software Testing (LAWST) and
the Austin Workshop on Test Automation (AWTA).

– LAWST 5 focused on oracles. Participants were Chris Agruss, James Bach, Jack Falk, David Gelperin,
Elisabeth Hendrickson, Doug Hoffman, Bob Johnson, Cem Kaner, Brian Lawrence, Noel Nyman, Jeff
Payne, Johanna Rothman, Melora Svoboda, Loretta Suzuki, and Ned Young.

– LAWST 1-3 focused on several aspects of automated testing. Participants were Chris Agruss, Tom
Arnold, Richard Bender, James Bach, Jim Brooks, Karla Fisher, Chip Groder, Elizabeth Hendrickson,
Doug Hoffman, Keith W. Hooper, III, Bob Johnson, Cem Kaner, Brian Lawrence, Tom Lindemuth, Brian
Marick, Thanga Meenakshi, Noel Nyman, Jeffery E. Payne, Bret Pettichord, Drew Pritsker, Johanna
Rothman, Jane Stepak, Melora Svoboda, Jeremy White, and Rodney Wilson.

– AWTA also reviewed and discussed several strategies of test automation. Participants in the first
meeting were Chris Agruss, Robyn Brilliant, Harvey Deutsch, Allen Johnson, Cem Kaner, Brian
Lawrence, Barton Layne, Chang Lui, Jamie Mitchell, Noel Nyman, Barindralal Pal, Bret Pettichord,
Christiano Plini, Cynthia Sadler, and Beth Schmitz.

• We’re indebted to Hans Buwalda, Elizabeth Hendrickson, Noel Nyman, Harry Robinson, James Tierney, and
James Whittaker for additional explanations of test architecture and/or stochastic testing.

• We also appreciate the assistance and hospitality of “Mentsville,” a well-known and well-respected, but
can’t-be-named-here, manufacturer of mass-market devices that have complex firmware.
Mentsville opened its records to us, providing us with details about a testing practice
(Extended Random Regression testing) that has been evolving at the company since 1990.

• Finally, we thank Alan Jorgenson for explaining hostile data stream testing to us and
providing equipment and training for us to use to extend his results.

Architectures of Test Automation 3

Typical Testing TasksTypical Testing Tasks
• Analyze product & its risks

– market

– benefits & features

– review source code

– platform & associated software

• Develop testing strategy
– pick key techniques

– prioritize testing foci

• Design tests
– select key test ideas

– create test for the idea

• Run test first time (often by hand)

• Evaluate results
– Report bug if test fails

• Keep archival records
– trace tests back to specs

• Manage testware environment

• If we create regression tests:
– Capture or code steps once

test passes

– Save “good” result

– Document test / file

– Execute the test

• Evaluate result
– Report failure or

– Maintain test case

Architectures of Test Automation 4

Automating TestingAutomating Testing

• No testing tool covers this range of tasks

• We should understand that

– “Automated testing” doesn’t mean

automated testing

– “Automated testing” means

Computer-Assisted Testing

Architectures of Test Automation 5

Automated GUI-Level Regression TestingAutomated GUI-Level Regression Testing

• Re-use old tests using tools like Mercury, Silk, Robot

• Low power

• High maintenance cost

• Significant inertia

INERTIA

The resistance to change that
our development process

builds into the project.

Architectures of Test Automation 6

The Critical Problem of Regression TestingThe Critical Problem of Regression Testing

• Very few tests

• We are driven by the politics of scarcity:
– too many potential tests

– not enough time

• Every test is lovingly crafted, or should be, because we need to
maximize the value of each test.

What if we could create, execute,
and evaluate scrillions of tests?
Would that change our strategy?

Architectures of Test Automation 7

Case Study: Extended Random RegressionCase Study: Extended Random Regression

• Welcome to “Mentsville”, a household-name manufacturer, widely respected
for product quality, who chooses to remain anonymous.

• Mentsville applies wide range of tests to their products, including unit-level
tests and system-level regression tests.

– We estimate > 100,000 regression tests in “active” library

• Extended Random Regression (ERR)

– Tests taken from the pool of tests the program has passed in this
build

– The tests sampled are run in random order until the software under
test fails (e.g crash)

– These tests add nothing to typical measures

of coverage.

– Should we expect these to find bugs?

Architectures of Test Automation 8

Extended Random Regression TestingExtended Random Regression Testing

• Typical defects found include timing problems, memory
corruption (including stack corruption), and memory leaks.

• Recent release: 293 reported failures exposed 74 distinct bugs,
including 14 showstoppers.

• Mentsville’s assessment is that ERR exposes problems that can’t
be found in less expensive ways.
– troubleshooting of these failures can be very difficult and very

expensive
– wouldn’t want to use ERR for basic functional bugs or simple

memory leaks--too expensive.
• ERR has gradually become one of the fundamental techniques

relied on by Mentsville
– gates release from one milestone level to

the next.

Architectures of Test Automation 9

Implications of ERR for Reliability ModelsImplications of ERR for Reliability Models
• Most models of software reliability make several common assumptions,

including:
– Every fault (perhaps, within a given severity class) has the same

chance of being encountered as every other fault.
– Probability of fault detection in a given period of time is directly

related to the number of faults left in the program.
(Source (example) Farr (1995) “Software Reliability Modeling Survey,” in
Lyu (ed.) Software Reliability Engineering.)

• Additionally, the following ideas are foreign to most models:
a) There are different kinds of faults (different detection probabilities)
b) There are different kinds of tests (different exposure probabilities)
c) The power of one type of test can diminish over time, without a

correlated loss of power of some other type of test.
d) The probability of exposing a given kind of fault depends

in large part on which type of test you’re using.
ERR demonstrates (d).

Architectures of Test Automation 10

Summary So FarSummary So Far

• Traditional test techniques tie us to a small number of tests.

• Extended Random Regression exposes bugs the traditional
techniques probably won’t find.

• The results of Extended Random Regression provide another
illustration of the weakness of current models of software
reliability.

Architectures of Test Automation 11

OK, so it finds some bugs.
So what?

Are there any types of software
for which

tests like this are really important
or is this just another

 technique for the textbooks?

Architectures of Test Automation 12

Ten Examples of HVATTen Examples of HVAT

1. Extended random regression testing

2. Function equivalence testing (comparison to a reference
function)

3. Comparison to a computational or logical model

4. Comparison to a heuristic prediction, such as prior behavior

5. Simulator with probes

6. State-transition testing without a state model (dumb monkeys)

7. State-transition testing using a state model (terminate on failure
rather than after achieving some coverage criterion)

8. Functional testing in the presence of background load

9. Hostile data stream testing

10. Random inputs to protocol checkers

Architectures of Test Automation 13

A Structure for Thinking about HVATA Structure for Thinking about HVAT
• INPUTS

– What is the source for our inputs?
How do we choose input values for
the test?

– (“Input” includes the full set of
conditions of the test)

• OUTPUTS
– What outputs will we observe?

• EVALUATION
– How do we tell whether the

program passed or failed?
• EXPLICIT MODEL?

– Is our testing guided by any explicit
model of the software, the user, the
process being automated, or any
other attribute of the system?

• WHAT ARE WE MISSING?
– The test highlights some problems

but will hide others.

• SEQUENCE OF TESTS
– Does / should any aspect of test

N+1 depend on test N?
• THEORY OF ERROR

– What types of errors are we
hoping to find with these tests?

• TROUBLESHOOTING SUPPORT
– What data are stored? How else

is troubleshooting made easier?
• BASIS FOR IMPROVING TESTS?
• HOW TO MEASURE PROGRESS?

– How much, and how much is
enough?

• MAINTENANCE LOAD / INERTIA?
– Impact of / on

 change to the SUT
• CONTEXTS

– When is this useful?

Architectures of Test Automation 14

Mentsville ERR and the StructureMentsville ERR and the Structure
• INPUTS:

– taken from existing regression tests,
which were designed under a wide
range of criteria

• OUTPUTS
– Mentsville: few of interest other

than diagnostics
– Others: whatever outputs were

interesting to the regression testers,
plus diagnostics

• EVALUATION STRATEGY
– Mentsville: run until crash or other

obvious failure
– Others: run until crash or until

mismatch between program
behavior or prior results or model
predictions

• EXPLICIT MODEL?
– None

• WHAT ARE WE MISSING?
– Mentsville: Anything that doesn’t

cause a crash
• SEQUENCE OF TESTS

– ERR sequencing is random
• THEORY OF ERROR

– bugs not easily detected by the
regression tests: long-fuse bugs,
such as memory corruption,
memory leaks, timing errors

• TROUBLESHOOTING SUPPORT
– diagnostics log, showing state of

system before and after tests

Architectures of Test Automation 15

What Are We Missing?What Are We Missing?
We Miss Much of the Actual Test Input and ResultsWe Miss Much of the Actual Test Input and Results

System
Under
Test

Intended Test
Inputs

Additional
Precondition Data

Precondition
Program State

Environmental
Inputs

Examined Test
Results

Unexamined
Postcondition Data

Postcondition
Program State

Environmental
Results

Adapted, with permission of Doug Hoffman

Architectures of Test Automation 16

Function Equivalence TestingFunction Equivalence Testing

• Example from the Testing 2 final exam last spring:
– Test Open Office spreadsheet by comparing it with Excel

– (We used COM interface for Excel and an equivalent
interface for OO, drove the API-level tests using a simple
scripting language, Ruby)

– Pick a function in OO (and Excel)

– Generate random input to the function

– Compare OO evaluation and Excels

– Continue until you find errors or are satisfied of the
equivalence of the two functions.

– Now test expressions that combine several of
the tested functions

Architectures of Test Automation 17

Function Equivalence TestingFunction Equivalence Testing
• INPUTS:

– Random
• OUTPUTS

– We compare output with the output
from a reference function. In practice,
we also independently check a small
sample of calculations for plausibility

• EVALUATION STRATEGY
– Output fails to match, or fails to

match within delta, or testing stops
from crash or other obvious
misbehavior.

• EXPLICIT MODEL?
– The reference function is, in relevant

respects, equivalent to the software
under test.

– If we combine functions (testing
expressions rather than single
functions), we need a grammar or
other basis for describing
combinations.

• WHAT ARE WE MISSING?
– Anything that the reference function

can’t generate

• SEQUENCE OF TESTS
– Tests are typically independent

• THEORY OF ERROR
– Incorrect data processing / storage /

calculation

• TROUBLESHOOTING SUPPORT
– Inputs saved

• BASIS FOR IMPROVING TESTS?

Architectures of Test Automation 18

Oracle comparisons are heuristic:Oracle comparisons are heuristic:
We compare only a few result attributesWe compare only a few result attributes

Test Results

Test OracleSystem Under Test

Test Results

Modified from notes by Doug Hoffman

Intended Test
Inputs

Additional
Precondition Data

Precondition
Program State

Environmental
Inputs

Postcondition Data

Postcondition Program State

Environmental Results

Postcondition Data

Postcondition Program State

Environmental Results

Architectures of Test Automation 19

 What does this one
have to do with

reliability models?

Architectures of Test Automation 20

What is this technique
useful for?

Architectures of Test Automation 21

Summary So FarSummary So Far

• Traditional test techniques tie us to a small number of tests.

• Extended Random Regression exposes bugs the traditional techniques
probably won’t find.

• The results of Extended Random Regression provide another illustration of the
weakness of current models of software reliability.

• ERR is just one example of a class of high volume tests

• High volume tests are useful for:

– exposing delayed-effect bugs

– automating tedious comparisons, for any testing task that can be
turned into tedious comparisons

• Test oracles are incomplete.

– If we rely on them too heavily, we’ll miss bugs

Architectures of Test Automation 22

Phone System: Simulator with ProbesPhone System: Simulator with Probes

Telenova Station Set 1. Integrated voice and data.
108 voice features, 110 data features. 1985.

Architectures of Test Automation 23

Simulator with ProbesSimulator with Probes

Context-sensitive
display

10-deep hold queue
10-deep wait queue

Architectures of Test Automation 24

Idle

Connected

On Hold

Ringing Caller
hung up

You
hung up

Simplified state diagram

Simulator with ProbesSimulator with Probes

Architectures of Test Automation 25

Simulator with ProbesSimulator with Probes

Idle

Connected

On Hold

Ringing Caller
hung up

You
hung up

Cleaned up everything but the stack. Failure was
invisible until crash. From there, held calls were hold-
forwarded to other phones, causing a rotating outage.

Architectures of Test Automation 26

Simulator with ProbesSimulator with Probes
The bug that triggered the simulation looked like this:
• Beta customer (a stock broker) reported random failures

– Could be frequent at peak times
– An individual phone would crash and reboot, with other phones crashing while the

first was rebooting
– On a particularly busy day, service was disrupted all (East Coast) afternoon

• We were mystified:
– All individual functions worked
– We had tested all lines and branches.

• Ultimately, we found the bug in the hold queue
– Up to 10 calls on hold, each adds record to the stack
– Initially, checked stack whenever call was added or removed, but this took too much

system time
– Stack has room for 20 calls (just in case)
– Stack reset (forced to zero) when we knew it should be empty
– The error handling made it almost impossible for us to detect the

problem in the lab. Because we couldn’t put more than 10 calls on the
stack (unless we knew the magic error), we couldn’t get to 21 calls to
cause the stack overflow.

Architectures of Test Automation 27

Simulator with ProbesSimulator with Probes

Having found and fixed
the hold-stack bug,
should we assume

that we’ve taken care of the problem
or that if there is one long-sequence bug,

there will be more?

Hmmm…
If you kill a cockroach in your kitchen,

do you assume
you’ve killed the last bug?

Or do you call the exterminator?

Architectures of Test Automation 28

Simulator with ProbesSimulator with Probes

• Telenova (*) created a simulator
– generated long chains of random events, emulating input to

the system’s 100 phones
– could be biased, to generate more holds, more forwards,

more conferences, etc.
• Programmers added probes (non-crashing asserts that sent alerts

to a printed log) selectively
– can’t probe everything b/c of timing impact

• After each run, programmers and testers tried to replicate failures,
fix anything that triggered a message. After several runs, the logs
ran almost clean.

• At that point, shift focus to next group of features.
• Exposed lots of bugs

(*) By the time this was implemented, I had joined Electronic Arts.

Architectures of Test Automation 29

Simulator with ProbesSimulator with Probes
• INPUTS:

– Random, but with biasable
transition probabilities.

• OUTPUTS
– Log messages generated by the

probes. These contained some
troubleshooting information
(whatever the programmer chose to
include).

• EVALUATION STRATEGY
– Read the log, treat any event

leading to a log message as an
error.

• EXPLICIT MODEL?
– At any given state, the simulator

knows what the SUT’s options are,
but it doesn’t verify the predicted
state against actual state.

• WHAT ARE WE MISSING?
– Any behavior other than log

• SEQUENCE OF TESTS
– Ongoing sequence, never reset.

• THEORY OF ERROR
– Long-sequence errors (stack

overflow, memory corruption,
memory leak, race conditions,
resource deadlocks)

• TROUBLESHOOTING SUPPORT
– Log messages

• BASIS FOR IMPROVING TESTS?
– Clean up logs after each run by

eliminating false alarms and fixing
bugs. Add more tests and log
details for hard-to-repro errors

Architectures of Test Automation 30

SummarySummary
• Traditional test techniques tie us to a small number of tests.
• Extended random regression and long simulations exposes bugs the traditional

techniques probably won’t find.
• Extended random regression and simulations using probes provide another

illustration of the weakness of current models of software reliability.
• ERR is just one example of a class of high volume tests
• High volume tests are useful for:

– exposing delayed-effect bugs
• embedded software
• life-critical software
• military applications
• operating systems
• anything that isn’t routinely rebooted

– automating tedious comparisons, for any testing task
that can be turned into tedious comparisons

• Test oracles are incomplete.
– If we rely on them too heavily, we’ll miss bugs

Architectures of Test Automation 31

Where WeWhere We’’re Headedre Headed

1. Enable the adoption and practice of this technique
– Find and describe compelling applications (motivate

adoption)
– Build an understanding of these as a class, with differing

characteristics
• vary the characteristics to apply to a new situation
• further our understanding of relationship between context and

the test technique characteristics
– Create usable examples:

• free software, readable, sample code
• applied well to an open source program

2. Critique and/or fix the reliability models

Architectures of Test Automation 32

A Few More ExamplesA Few More Examples

• We aren’t discussing these in the talk

• These just provide a few more illustrations that you might work
through in your spare time.

Architectures of Test Automation 33

State Transition TestingState Transition Testing
• State transition testing is stochastic. It helps to distinguish between

independent random tests and stochastic tests.
• Random Testing

– Random (or statistical or stochastic) testing involves generating test
cases using a random number generator. Individual test cases are
not optimized against any particular risk. The power of the method
comes from running large samples of test cases.

• Independent Random Testing
– Our interest is in each test individually, the test before and the test

after don’t matter.
• Stochastic Testing

– A stochastic process involves a series of random events over time
• Stock market is an example
• Program may pass individual tests when run in

isolation: The goal is to see whether it can pass a large
series of the individual tests.

Architectures of Test Automation 34

State Transition Tests Without a State Model:State Transition Tests Without a State Model:
 Dumb Monkeys Dumb Monkeys

• Phrase coined by Noel Nyman. Many prior uses (UNIX kernel, Lisa, etc.)

• Generate a long sequence of random inputs driving the program from state to
state, but without a state model that allows you to check whether the program
has hit the correct next state.

– Executive Monkey: (dumbest of dumb monkeys) Press buttons
randomly until the program crashes.

– Clever Monkey: No state model, but knows other attributes of the
software or system under test and tests against those:

• Continues until crash or a diagnostic event occurs. The

 diagnostic is based on knowledge of the system, not

on internals of the code. (Example: button push

doesn’t push—this is system-level, not application

level.)

• Simulator-with-probes is a clever monkey
• Nyman, N. (1998), “Application Testing with Dumb Monkeys”, STAR Conference West.

Architectures of Test Automation 35

Dumb MonkeyDumb Monkey
• INPUTS:

– Random generation.
– Some commands or parts of system

may be blocked (e.g. format disk)
• OUTPUTS

– May ignore all output (executive
monkey) or all but the predicted
output.

• EVALUATION STRATEGY
– Crash, other blocking failure, or

mismatch to a specific prediction or
reference function.

• EXPLICIT MODEL?
– None

• WHAT ARE WE MISSING?
– Most output. In practice, dumb

monkeys often lose power quickly
(i.e. the program can pass it even
though it is still full of bugs).

• SEQUENCE OF TESTS
– Ongoing sequence, never reset

• THEORY OF ERROR
– Long-sequence bugs

– Specific predictions if some aspects
of SUT are explicitly predicted

• TROUBLESHOOTING SUPPORT
– Random number generator’s seed,

for reproduction.

• BASIS FOR IMPROVING TESTS?

Architectures of Test Automation 36

State Transitions: State Models (Smart Monkeys)State Transitions: State Models (Smart Monkeys)

• For any state, you can list the actions the user can take, and the results of each
action (what new state, and what can indicate that we transitioned to the
correct new state).

• Randomly run the tests and check expected against actual transitions.
• See www.geocities.com/model_based_testing/online_papers.htm
• The most common state model approach seems to drive to a level of coverage,

use Chinese Postman or other algorithm to achieve all sequences of length N.
(A lot of work along these lines at Florida Tech)
– High volume approach runs sequences until failure

appears or the tester is satisfied that no failure will
be exposed.

• Coverage-oriented testing fails to account for the problems
associated with multiple runs of a given feature or combination.

• Robinson, H. (1999a), “Finite State Model-Based Testing on a Shoestring”, STAR Conference West.

Available at www.geocities.com/model_based_testing/shoestring.htm.
• Robinson, H. (1999b), “Graph Theory Techniques in Model-Based Testing”, International Conference on

Testing Computer Software. Available at www.geocities.com/model_based_testing/model-based.htm.

• Whittaker, J. (1997), “Stochastic Software Testing”, Annals of Software Engineering, 4, 115-131.

Architectures of Test Automation 37

State-Model Based TestingState-Model Based Testing
• INPUTS:

– Random, may be guided or
constrained by a model

• OUTPUTS
– The state model predicts values for

one or more reference variables
that tell us whether we reached the
expected state.

• EVALUATION STRATEGY
– Crash or other obvious failure.

Compare to prediction from state
model.

• EXPLICIT MODEL?
– Detailed state model or simplified

model: operational modes.
• WHAT ARE WE MISSING?

– The test highlights some
relationships and hides others.

• SEQUENCE OF TESTS
– Does any aspect of test N+1 depend on

test N?

• THEORY OF ERROR
– What types of errors are we hoping to

find with these tests?

• TROUBLESHOOTING SUPPORT
– What data are stored? How else is

troubleshooting made easier?

• BASIS FOR IMPROVING TESTS?

Architectures of Test Automation 38

Hostile Data Stream TestingHostile Data Stream Testing

• Pioneered by Alan Jorgenson (FIT, recently retired)

• Take a “good” file in a standard format (e.g. PDF)
– corrupt it by substituting one string (such as a really, really

huge string) for a much shorter one in the file

– feed it to the application under test

– Can we overflow a buffer?

• Corrupt the “good” file in thousands of different ways, trying to
distress the application under test each time.

• Jorgenson and his students showed serious security problems in
some products, primarily using brute force techniques.

• Method seems appropriate for application of

genetic algorithms or other AI to optimize search.

Architectures of Test Automation 39

Hostile Data Stream and HVACHostile Data Stream and HVAC
• INPUTS:

– A series of random mutations of the
base file

• OUTPUTS
– Simple version--not of much interest

• EVALUATION STRATEGY
– Run until crash, then investigate

• EXPLICIT MODEL?
– None

• WHAT ARE WE MISSING?
– Data corruption, display corruption,

anything that doesn’t stop us from
further testing

• SEQUENCE OF TESTS
– Independent selection (without

repetition). No serial dependence.
• THEORY OF ERROR

– What types of errors are we
hoping to find with these tests?

• TROUBLESHOOTING SUPPORT
– What data are stored? How else is

troubleshooting made easier?
• BASIS FOR IMPROVING TESTS?

– Simple version: hand-tuned
– Seemingly obvious candidate for

GA’s and other AI

