
An introduction to the theory and

practice of domain testing

VISTACON

HCMC, VIETNAM

September, 2010

Cem Kaner

Sowmya Padmanabhan

1

Overview
Domain testing is the most widely taught (and perhaps the most widely used)
software testing technique.

Practitioners often study the simplest cases of domain testing under two other
names, "boundary testing" and "equivalence class analysis." That simplified
form applies

– Only to tests of input variables

– Only when tested at the system level

– Only when tested one at a time

– Only when tested in a very superficial way

In competent practice, and in the research literature, all of these limitations are
often set aside, but there is very little practical teaching of the more general
approaches.

Sowmya Padmanabhan did her M.Sc. thesis research on this. Sowmya, Doug
Hoffman and I are co-authoring the Domain Testing Workbook.

This talk will present a worksheet that we've developed for planning and
creating domain tests of individual variables or multiple variables that are
independent or linearly or nonlinearly related. I'll brush on some of the theory
underlying the approach, but mainly I want to present some of the lessons that
this work brought home to me about skilled (contrasted with inexperienced or
unskilled) domain testing.

2

3

Understanding domain testing

In domain testing,
we partition a domain

into sub-domains
(equivalence classes)

and then test using
values from each

sub-domain.

Notice how I format this

– One line per test

4

Variable Valid case

equivalence class

Invalid case

equivalence class

Boundaries &

special cases

Notes

X 0 – 100 0

100

< 0 -1

> 100 101

Domain Testing

– Each test maps clearly to a description of the class that it represents

– I start by focusing on classes directly tied to the variable's primary

dimension.

• I'll talk more about primary and secondary dimensions later, but for now

note that

– my first-draft chart works on X's number line,

– There are no letters, no blank fields, no timeouts, no X-input-too-long

overflows.

5

Variable Valid case

equivalence class

Invalid case

equivalence class

Boundaries &

special cases

Notes

X 0 – 100 0

100

< 0 -1

> 100 101

Domain Testing

– I prefer "valid" values first, but some people prefer this order instead.

6

Variable Valid case

equivalence class

Invalid case

equivalence class

Boundaries &

special cases

Notes

X < 0 -1

0 – 100 0

100

> 100 101

Boundary table as a test plan component

– Makes the reasoning obvious.

– Makes the relationships between test cases fairly obvious.

– Expected results are pretty obvious.

– Several tests on one page.

– Can delegate it and have tester check off what was done.

Provides some limited opportunity for tracking.

– Not much room for status.

7

Building table like these (in practice)

– Relatively few programs will come to you with all fields

fully specified. Therefore, you should expect to learn what

variables exist and their definitions over time.

– To build an equivalence class analysis over time, put the

information into a spreadsheet. Start by listing variables. Add

information about them as you obtain it.

– The table should eventually contain all variables. This means,

all input variables, all output variables, and any intermediate

variables that you can observe.

– In practice, most tables that I’ve seen are incomplete. The

best ones that I’ve seen list all the variables and add detail for

critical variables.

8

These tables are limited

– Most of these tables consider only input variables

• People don't buy programs to enter data

• They buy programs to analyze data and give results

• Therefore, we need to test output variables

– These tables focus on individual variables

• Individual variables are a start, but we need to test

combinations of several variables together

9

Exercise 1

– S is an input string. It will hold someone's name

– You can enter letters, numbers or spaces into S

– The program doesn't care what S is but it cannot be more

than 30 characters

Do an equivalence class / boundary analysis on S.

– Ignore secondary dimensions, for now

When you are done, please pass the chart to the person on your

left, and grade the chart of the person on your right.

10

Exercise 2

– A, B, and C are integers.

– You can enter data into A and B, but not C

– C is calculated from A and B

– Do an equivalence class analysis on C, showing what values

of A and B you need to test with, to test C.

– When you are done, please pass the chart to the person on

your right, and grade the chart of the person on your left.

11

Research

Cem Kaner & Sowmya Padmanabhan, "Practice and transfer of learning in the

teaching of software testing," Conference on Software Engineering Education

& Training, Dublin, July 2007.

– http://www.kaner.com/pdfs/kanerPadmanabhanPractice.pdf

– http://www.kaner.com/pdfs/CSEETdomain2007.pdf (slides)

Padmanabhan, S. (2004). Domain Testing: Divide & Conquer. Unpublished

M.Sc. Thesis., Florida Institute of Technology, Melbourne, FL.

http://www.testingeducation.org/a/DTD&C.pdf.

– We tried teaching this technique via exemplars but had mixed results.

– We ultimately concluded that we needed to embed the exemplars in a

stronger cognitive structure.

12

Four central questions

– What domain are we testing?

– How do we determine how to group values of a

variable(s) into equivalence classes?

– How do we determine which members of each class

to test?

– How do we determine whether the program passed

or failed the test?

13

Domains

Functional testing:

We treat the program as a function that

transforms inputs to outputs.
(Howden)

14

Input
domain

Output
domainF(x)

Domains

– Single-input tests check input filters:

• Is this necessary at the system level?

• Should we test the filter at the unit level?

– Output domain is more challenging

K = I * J

I, J, K are integers

I, J are input variables. K is the output.

Test K.

We'll look at this example again later

15

Four central questions

– What domain are we testing?

–How do we determine how to group

values of a variable(s) into equivalence

classes?

– How do we determine which members of each class

to test?

– How do we determine whether the program passed

or failed the test?

16

Partitioning

How do we determine how to group variables into

equivalence classes?

– Partitioning a set means splitting it into

nonoverlapping subsets.

– Disjunction (nonoverlapping) is important for some

models, but practitioners often work with

overlapping sets (Kaner, et al., 1993; Weyuker &

Jeng, 1991). For our practical purposes, partitioning

means dividing a set of possible values of a variable

into subsets that don’t overlap (or not much).

– Partitioning usually splits a set into equivalence

classes.
17

Partitioning

Intuitive or subjective equivalence: two test values are
equivalent if they are so similar to each other that it seems
pointless to test both.

Intuitive definitions (e.g., Craig & Jaskiel, 2002; Kit, 1995)
appear obvious. For example,

– “Basically we are identifying inputs that are treated the same
way by the system and produce the same results” Craig &
Jaskiel (2002, p. 162).

– “If you expect the same result from two tests, you consider
them equivalent. A group of tests forms an equivalence class
if you believe they all test the same thing … Two people
analyzing a program will come up with a different list of
equivalence classes. This is a subjective process” Kaner
(1988, p. 81).

18

Partitioning

Specified equivalence: two test values are equivalent if the

specification says that the program handles them in the same way.

– Burnstein, 2003; DeMillo, McCracken, Martin, &

Passafiume, 1987; Myers, 1979.

– Challenges:

• Testers complain about missing specifications may spend

enormous time writing specifications

• Focus is on things that were specified, but there might be

more bugs in the features that were un(der)specified

19

Partitioning

– Analysis of the code that defines or uses the variables: The

intuitive and specified-equivalence approaches focus on the

program’s variables, primarily from a black box perspective.

Some authors (e.g., Howden, 1980) suggest ways to partition

data or identify boundary values by reading the code.

– Same path: Descriptions that appear primarily in the research

literature say that two values of a variable are equivalent if

they cause the program to take the same branch or the same

(sub)path. (Beizer, 1995; Clarke, et al., 1982; White, 1981)

20

Partitioning

Equivalent Paths: two test values are equivalent if they would
drive the program down the same path (e.g. execute the same
branch of an IF). (Beizer, 1995; Clarke, et al., 1982; White, 1981)

– Tester should be a programmer

– Tester should design tests from the code

– Some authors claim that a complete domain test will yield a
complete branch coverage.

– No basis for picking one member of the class over another.

– Two values might take program down same path but have
very different subsequent effects (e.g. timeout or not timeout
a subsequent program; or e.g. word processor's interpretation
and output may be the same but may yield different
interpretations / results from different printers.)

21

Partitioning

Risk-based equivalence:

– Several early authors pointed out that domain tests target

specific types of errors (Binder, 2000; Boyer, 1975; Clarke,

1976; White, 1981).

– Weyuker & Ostrand (1980; see also Jeng & Weyuker, 1989,

p. 38) proposed that the ideal partitioning should be

revealing, meaning that it

“divides the domain into disjoint subdomains with the

property that within each subdomain, either the program

produces the correct answer for every element or the

program produces an incorrect answer for every element.”

22

Partitioning

We adopt a subjective, risk-based definition of

equivalence:

– Two tests are equivalent, relative to a potential error,

if both should be error revealing (both could trigger

the error) or neither should be revealing (Weyuker &

Ostrand, 1980; Weyuker & Jeng, 1991).

– The same test might be error-revealing relative to one

potential error and not revealing relative to another.

– Given the same variable under analysis, two testers

are likely to imagine different lists of potential errors

because of their different experience history.

23

Four central questions

– What domain are we testing?

– How do we determine how to group values of a

variable(s) into equivalence classes?

–How do we determine which members

of each class to test?

– How do we determine whether the program passed

or failed the test?

24

25

Selection

Suppose that our program design is:

– INPUT < 10 result: Error message

– 10 <= INPUT < 25 result: Print "hello"

– 25 <=INPUT result: Error message

Some error types

– Program doesn't like numbers

• Any number will do

– Inequalities mis-specified (e.g. INPUT <= 25 instead of < 25)

• Detect only at boundary

– Boundary value mistyped (e.g. INPUT < 52, transposition error)

• Detect at boundary and any other value that will be
handled incorrectly

Boundary values (here, test at 25) catch all 3 errors

Non-boundary values (consider 53) may catch only 1 of the 3 errors

Selection

How do we determine which members of each class to
test?

– Boundaries are representatives of the equivalence
classes we sample them from. They're more likely to
expose an error than other class members, so they're
better representatives.

– “A best representative of an equivalence class is a
value that is at least as likely as any other value in
the class to expose an error.” (Kaner & Bach, 2003,
p. 37)

– Generalizing from boundaries to best
representatives is useful for analyzing nonordered
spaces, such as printers (Kaner, et al., 1993).

26

Selection is a stratified sampling problem

Domain testing is an instance of stratified sampling

In statistics, stratified sampling is a method of sampling from a

population.

When sub-populations vary considerably, it is advantageous to sample

each subpopulation (stratum) independently. Stratification is the process

of grouping members of the population into relatively homogeneous

subgroups before sampling. The strata should be mutually exclusive:

every element in the population must be assigned to only one stratum.

The strata should also be collectively exhaustive: no population element

can be excluded. Then random or systematic sampling is applied within

each stratum. This often improves the representativeness of the sample

by reducing sampling error.

Wikipedia: Stratified Sampling

– Polling looks for typical representatives

– Testing looks for “best” representatives (most likely to yield

failure or other new information) 27

Four central questions

– What domain are we testing?

– How do we determine how to group values of a

variable(s) into equivalence classes?

– How do we determine which members of each class

to test?

–How do we determine whether the

program passed or failed the test?

28

Evaluation

How do we determine whether the program passed or

failed the test?

– Stunningly little guidance on this in the domain

testing literature

– The answer is generally treated as obvious, but it is

not

– We did not buy the program in order to segregate

100 from 101 for the variable X. We did not buy the

program to obtain an input filter.

29

Evaluation

How do we determine whether the program passed or

failed the test?

– We bought the program to obtain benefits.

– We enter an X value to obtain benefits.

– We test a value of X

• Against the filter

• Against any use of X later in the program.

30

Failure to consider consequences with this

technique is our students' most common failure.

It is widespread among practitioners too.

Our structure for domain testing
Here is a list of several tasks that people often do as part of a domain test. We organized the book’s chapters around this list

because it seems to us to put the tasks into a logical order.

For any particular product or variable, you might skip several of these tasks. Or, you might do tasks in a different order than we list

here. This is an inventory, not a control structure.

A. Identify the potentially interesting variables.

B. Identify the variable(s) you can analyze now.

C. Determine the variable’s primary dimension.

D. Determine the variable’s type or scale.

E. Determine whether the variable’s values can be ordered (smallest to largest)

F. Partition (create equivalence classes):

• If the dimension is ordered, determine the sub-ranges and transition points.

• If the dimension is not ordered, determine what “similar” means for this variable, and base partitioning on that.

G. Lay out the analysis in a table that shows the partitions and best representatives (or boundary cases) for each partition.

H. Identify secondary dimensions and analyze each in the classical way.

I. Generalize the analysis to multidimensional variables.

J. Linearize the domain (if possible).

K. Identify constraints among the variables

L. Identify and test variables that hold results (output variables).

M. Evaluate how the program uses the value of this variable.

N. Identify additional potentially-related variables for combination testing.

O. Create combination tests for multidimensional or related variables.

P. Imagine risks that don’t necessarily map to an obvious dimension.

Q. Identify and list unanalyzed variables. Gather information for later analysis.

R. Summarize your analysis with a risk/equivalence table.
31

Our structure for domain testing

A. Identify the potentially interesting variables.

B. Identify the variable(s) you can analyze now.

– Frequently, we notice more variables than we can analyze

today.

– Identify the ones you’re going to work with now.

– Note the others and add details when you get them (or when

you go looking for them).

32

Exercise 3

SunTrust issues Visa credit cards with credit limits in the range of

$400 to $40000. A customer is not to be approved for credit limits

outside this range. A customer can apply for the card using an

online application form in which one of the fields requires that

the customer type in his/her desired credit limit.

– Identify the variables

– Do the domain analysis on as many of these variables as you

think are appropriate.

– Explain why you restricted your analysis to the variable(s)

that you did.

33

Our structure for domain testing

C. Determine the variable’s primary dimension.

– If we’re trying to put a number into X between 0 and 100, the
primary dimension is a number line that includes [0, 100].

– To figure out the primary dimension of a variable, ask what
the variable is for. What range of values will it contain if we
only give it useful values? That range lies along the primary
dimension.

– Sometimes, this is the only dimension

• If X is stored in a byte and is read by a function that will
interpret the bit pattern in that byte as a signed integer, then
no matter what we put into X, what gets read is an integer
between -128 and 127.

– Other times, there are possibilities outside of this dimension.
We’ll talk about these as secondary dimensions.

34

Our structure for domain testing

D. Determine the variable’s type or scale.

We will analyze

• integers

very differently from

• strings.

35

Exercise 4

What are the primary dimension and scale of:

The page setup function of a text editor allows a user to

set the width of the page in the range of 1 to 56 inches.

The page width input field will accept (and remember) up

to 30 places after the decimal point.

What are the boundaries between valid and invalid input?

36

Exercise 5

What are the primary dimension and scale of:

An ATM allows withdrawals of cash in amounts of $20

increments from $20 to $200 (inclusive).

What are the boundaries between valid and invalid input?

37

Exercise 6

What are the primary dimension and scale of:

A StudentLastName field must start with an alphabetic

character (upper or lower case). Subsequent characters

must be letters, numbers, or spaces.

What are the boundaries between valid and invalid input?

38

Examples of ordered sets

– ranges of numbers

– character codes

– how many times
something is done

• (e.g. shareware limit on
number of uses of a product)

• (e.g. how many times you can
do it before you run out of
memory)

– how many names in a
mailing list, records in a
database, variables in a
spreadsheet, bookmarks,
abbreviations

– size of the sum of
variables, or of some other
computed value (think
binary and think digits)

– size of a number that you
enter (number of digits) or
size of a character string

– size of a concatenated
string

– size of a path specification

– size of a file name

– size (in characters) of a
document

39

Examples of ordered sets

– size of a file (note special
values such as exactly 64K,
exactly 512 bytes, etc.)

– size of the document on the
page (compared to page
margins) (across different
page margins, page sizes)

– size of a document on a page,
in terms of the memory
requirements for the page.
This might just be in terms of
resolution x page size, but it
may be more complex if we
have compression.

– equivalent output events
(such as printing documents)

– amount of available memory
(> 128 meg, > 640K, etc.)

– visual resolution, size of
screen, number of colors

– operating system version

– variations within a group of
“compatible” printers, sound
cards, modems, etc.

– equivalent event times (when
something happens)

– timing: how long between
event A and event B (and in
which order--races)

– length of time after a timeout
(from JUST before to way
after) -- what events are
important?

40

Examples of ordered sets

– speed of data entry (time

between keystrokes,

menus, etc.)

– speed of input--handling of

concurrent events

– number of devices

connected / active

– system resources

consumed / available (also,

handles, stack space, etc.)

– date and time

– transitions between

algorithms (optimizations)

(different ways to compute

a function)

– most recent event, first

event

– input or output intensity

(voltage)

– speed / extent of voltage

transition (e.g. from very

soft to very loud sound)

41

Our structure for domain testing

E. Determine whether the variable’s values can be ordered

(smallest to largest).

– The classic examples are of ordered sets

42

Exercise 7

What is the proper ordering for this variable?:

An ATM allows withdrawals of cash in amounts of $20

increments from $20 to $200 (inclusive).

What are the boundaries between valid and invalid input?

43

Exercise 8

What is the proper ordering for this variable?:

A StudentLastName field must start with an alphabetic

character (upper or lower case). Subsequent characters

must be letters, numbers, or spaces.

What are the boundaries between valid and invalid input?

44

Our structure for domain testing

F. Partition (create equivalence classes):

• If the dimension is ordered, determine the sub-ranges and
transition points.

• If the dimension is not ordered, determine what “similar”
means for this variable, and base partitioning on that.

– We partitioned the values of X into three “equivalence
classes:”

• Too small

• Just right

• Too big

– For partitioning of non-orderable sets, see the Printers
example in Kaner / Falk / Nguyen, Testing Computer
Software

45

46

Examples of non-ordered sets

Here are examples of variables that don't fit the traditional mold

for equivalence classes but which have enough values that we

will have to sample from them. What are the boundary cases?

– Membership in a common group

• Such as employees vs. non-employees.

• Such as workers who are full-time or part-time or contract.

– Equivalent hardware

• such as compatible modems, video cards, routers

– Equivalent output events

• perhaps any report will do to answer a simple the question:

Will the program print reports?

– Equivalent operating environments

• such as French & English versions of Windows

Our structure for domain testing

G. Lay out the analysis in a table that shows the partitions

and best representatives (or boundary cases) for each

partition.

Note that this shows only the primary dimension.

Variable Valid case

equivalence class

Invalid case

equivalence class

Boundaries &

special cases

Notes

X 0 – 100 0

100

< 0 -1

> 100 101

47

Exercise 9

Partition this variable and lay out the analysis in a table that

shows the partitions and the best representatives for each

partition:

The page setup function of a text editor allows a user to

set the width of the page in the range of 1 to 56 inches.

The page width input field will accept (and remember) up

to 30 places after the decimal point.

48

Exercise 10

Analyze this using steps A through G:

(a) FoodVan delivers groceries to customers who order food

over the Net.

– To decide whether to buy more vans, FoodVan tracks

the number of customers who call for a van.

– A clerk enters the number of calls into a database

each day.

– Based on previous experience, the database is set to

challenge (ask, “Are you sure?”) any number greater

than 400 calls.

49

50

Exercise

A. Identify the potentially interesting variables.

B. Identify the variable(s) you can analyze now.

C. Determine the variable’s primary dimension.

D. Determine the variable’s type or scale.

E. Determine whether the variable’s values can be ordered (smallest to

largest)

F. Partition (create equivalence classes):

• If the dimension is ordered, determine the sub-ranges and

transition points.

• If the dimension is not ordered, determine what “similar” means

for this variable, and base partitioning on that.

G. Lay out the analysis in a table that shows the partitions and best

representatives (or boundary cases) for each partition.

Exercise 10 (b)

Continued from Exercise 10(a).

Analyze this using steps A through G:

FoodVan schedules drivers one day in advance. To be

eligible for an assignment, a driver must have special

permission or she must have driven within 30 days of the

shift she will be assigned to.

51

52

Exercise

A. Identify the potentially interesting variables.

B. Identify the variable(s) you can analyze now.

C. Determine the variable’s primary dimension.

D. Determine the variable’s type or scale.

E. Determine whether the variable’s values can be ordered (smallest to

largest)

F. Partition (create equivalence classes):

• If the dimension is ordered, determine the sub-ranges and

transition points.

• If the dimension is not ordered, determine what “similar” means

for this variable, and base partitioning on that.

G. Lay out the analysis in a table that shows the partitions and best

representatives (or boundary cases) for each partition.

53

Understanding domain testing

As you just saw in the last example, one of the underlying risks
addressed by domain testing is ambiguity. Interpretation of the
specification is often most difficult for the boundary cases.

This is one of the key reasons that we test equivalence classes at
their boundaries rather than at random “equivalent” points inside
the set. (Read Hamlet & Taylor, 1988; Ostrand & Balcer, 1988.)

Our structure for domain testing

H. Identify secondary dimensions and analyze each in the classical

way.

– This is where we consider other data types and other sources of

variation that may affect the handling of this variable

• Non-integer input

• Non-numeric input

• Buffer-attackingly large or small values

• Time

– Weinberg/Myers included these dimensions in their presentations

– Many others (Binder, academics) ignored them completely (e.g.

Binder’s treatment of Triangle, over 100 tests, all on primary

dimension)

– No other discussions that we’ve seen that distinguish primary from

secondary (what the variable/feature is for versus what else might

happen to it.) 54

Our structure for domain testing

I. Generalize the analysis to multidimensional variables.

– Copeland cites this as the breakpoint between equivalence
class / boundary analysis & domain analysis because so
many academic treatments (I include Beizer in these) present
domain testing as a multidimensional (two or three variable)
technique

– The sampling theory is the same: partition & select

– If variables are independent, we can use combination
techniques for independent variables (e.g. combinatorial or
random)

– When value of one variable constrains the available values
for the other(s), combinatorial (e.g. all-pairs) fails. Instead,
we have to map the multidimensional space as it is and
sample from the actual boundaries.

55

Exercise 11

What are the secondary dimensions of:

The page setup function of a text editor allows a user to

set the width of the page in the range of 1 to 56 inches.

The page width input field will accept (and remember) up

to 30 places after the decimal point.

What are the boundaries between valid and invalid input—along

these secondary dimensions?

56

Exercise 12

What are the secondary dimensions of:

An ATM allows withdrawals of cash in amounts of $20

increments from $20 to $200 (inclusive).

What are the boundaries between valid and invalid input—along

these secondary dimensions?

57

Exercise 13

What are the secondary dimensions of:

You are testing a program that includes an Integer

Square Root function. The function reads a 32-bit word

that is stored in memory, interprets the contents as an

unsigned integer and then computes the square root of

the integer, as a floating point number.

What are the boundaries between valid and invalid input—along

these secondary dimensions?

58

Our structure for domain testing

I. Independent

multidimensional variables.

–Combine

• X = 0 or 6 (its

boundaries)

• Y = 0 or 5 (its

boundaries)

5

0 6

59

Our structure for domain testing

I. Non-independent multidimensional

variables.

I. Combinations of

• X = 0 or 6 (its boundaries)

• Y = 0 or 5 (its boundaries)

are not useful:

• (0, 0) is on boundary

• (6, 0) is not near any boundary

• (5, 0) is on boundary

• (0, 5) is not near any boundary

5

0 5

60

Our structure for domain testing

J. Linearize the domain (if possible).

The goal is to describe the boundaries of the

domain in terms of simple linear

inequalities, like this:

0 ≤ X ≤ 1

X ≤ Y ≤ 5+X

61

Our structure for domain testing
J. Linearize the domain (if possible).

Extensive academic writing about simple linear
inequalities:

0 ≤ X ≤ 1

X ≤ Y ≤ 5+X

– On points, off points, in points, out points

– Special cases that have confused students
for years

– The heuristics fall apart for simple
nonlinear cases, like:

X2 + Y2 ≤ 10
62

Our structure for domain testing

K. Identify constraints among the variables

– 30 days in September but not August or October

• (month, day)

– How much is sales tax in this city?

• (tax rate, city)

– Oh, that’s against the law here?

• (laws, country)

63

Our structure for domain testing

L. Identify and test variables that hold results

(output variables).

– Simple example: Mailing labels

• Inputs: Your first, middle and last names

• Output: A label that your name can’t fit on

64

Exercise 14

– I, J, and K are (signed) integers.

– You can enter data into I and J. You cannot enter data directly

into K.

– The program calculates K = I * J.

a. What are the constraints among I, J, and K?

b. What invalid values are possible for K?

c. How would you create a table to show tests for the boundary

cases of K?

65

Our structure for domain testing

M. Evaluate how the program uses the value of this

variable.

– Every variable that can be affected by this variable

can be tested with boundaries (and other interesting

values) of this variable

– 1st through Nth order data flows

– Program slicing addresses this in maintenance

Lecture example: resizing the width of PowerPoint

slides

66

Our structure for domain testing

N. Identify additional potentially-related variables for

combination testing.

O. Create combination tests for multidimensional or related

variables.

– Earlier, we considered an individual variable that was inherently

multidimensional (a point)

– Now consider testing a bunch of variables together that are not

inherently dimensions of one larger variable.

– We can reduce the enormous set of tests via stratified sampling

• All-pairs is one stratified sampling approach (sample with a

coverage criterion)

• Cause-effect graphing is similar but for constraining variables

• Other possibilities …
67

Our structure for domain testing

P. Imagine risks that don’t necessarily map to an

obvious dimension.

– Domain analysis is the start, not the end of test

design

68

Our structure for domain testing

Q. Identify and list unanalyzed variables. Gather

information for later analysis.

– You will always have more research to do

– You will never have a complete test plan

69

R. Summarize your analysis with a risk/equivalence table
For more examples, see workbook handout p. 62, 68, 135

Our structure for domain testing

R. Summarize your analysis with a risk/equivalence table.

– Classical domain analysis starts with the primary dimension,

partitions it, and selects "best representative" tests for each

partition.

Underlying this is a theory of error: programmers may

misclassify values of the variable, especially at boundaries

between partitions.

– Many authors extend this analysis to values of the variable that are

"off" the primary dimension, such as letters in a number field or

entering only two values into a 3-value dialog.

These extensions to secondary dimensions are interesting

when the user error (or other source of bad data) is plausible.

In these cases, we pick a best representative of this class of

error—an example of this type of error that is most likely to

cause the program to fail.
71

Our structure for domain testing

R. Summarize your analysis with a risk/equivalence table.

– Risk-based testing starts from a possible error and designs

tests that should expose the error if it is there.

– Domain testing is a type of risk-based testing that is focused

on classification errors and their consequences.

– Risk-based domain testing starts from the potential error:

• We identify how the variable we are working with might be

involved with that error

• We partition values of the variable into classes

– We ignore the classes that cannot expose the error

– We test best representatives from classes that can expose

the error if it is in the code.

72

Our structure for domain testing
R. Summarize your analysis with a risk/equivalence table.

We prefer the classical table for simple, academic examples because the risk-

oriented table is so much more complex.

The weakness of the very simple examples is that they are divorced from real-

life software:

– You analyze a variable, but you don’t know why a program needs it, what

the program will do with it, what other variables will be used in

conjunction with it.

– As soon as you know the real-life information, many risks (should)

become apparent, and these are very difficult to represent in the classical

table because it is best used to highlight one or a few primary dimensions

of a variable.

The risk-oriented table helps us organize the testing that is based on this

broader knowledge of the application.

– Any time you are thinking beyond the basic “too big / too small” tests,

this style of table might be more helpful than the classical one.

73

74

Notes on the FoodVan Exercise

Even these simple specifications are ambiguous:

– Does “within 30 days” mean “less than 30” or “less than or equal

to 30” ?

– When does the special permission have to have been issued?

– If you can work tomorrow morning on the basis of permission, can

you work tomorrow afternoon on the basis of experience? Is

tomorrow morning within 30 days of tomorrow afternoon?

– Do we compute 30 days in days or hours (minutes / seconds)?

– What result if the last day you worked was 28 days ago? 29 days

ago? 30 days ago?

Even if you are clear on the answers to these, do you believe that the

programmer and the specification writer will come to the same

answers?

References

For a list of references, see our file on disk—excerpt from the

Domain Testing Workbook

75

