
The Ongoing Revolution in Software Testingg g g

Cem Kaner, J.D., Ph.D.
P f f S f E i iProfessor of Software Engineering
Florida Institute of Technology

Ongoing Revolution—October 2007 Copyright © Cem Kaner 1

Summary
My intent in this talk is to challenge an orthodoxy in testing, a set of
commonly accepted assumptions about our mission, skills, and
constraints, including plenty that seemed good to me when I published
them in 1988, 1993 or 2001.
Surprisingly, some of the old notions lost popularity in the 1990’s but
came back under new marketing with the rise of eXtreme Programming. g g g
I propose we embrace the idea that testing is an active, skilled technical
investigation. Competent testers are investigators—clever, sometimes
mischievous researchers—active learners who dig up information about mischievous researchers active learners who dig up information about
a product or process just as that information is needed.
I think that
• views of testing that don’t portray testing this way are obsolete and

counterproductive for most contexts and
• educational resources for testing that don’t foster these skills and

Ongoing Revolution—October 2007 Copyright © Cem Kaner

g
activities are misdirected and misleading.

2

Old Views

Many years ago, the software development community formed a
model for the software testing effort. As I interacted with it from
1980 d h d l i l d d l "b i ” d h1980 onward, the model included several "best practices” and other
shared beliefs about the nature of testing.

Ongoing Revolution—October 2007 Copyright © Cem Kaner 3

Best Practices?
Let’s be clear about what we mean when we say, “Best Practice.”
A “best practice” is an idea that a consultant thinks he can sell to a lot
of people. p p
There is no assurance that this idea has ever succeeded in practice, and
certainly no implication that it has been empirically tested and found
superior (best) to competing ideas under general conditionssuperior (best) to competing ideas under general conditions.

Ongoing Revolution—October 2007 Copyright © Cem Kaner 4

Old Views
Much of the same old lore has stayed with us and is currently promoted
as the proper guide to testing culture & practice. For example:
• Look at ISEB’s current syllabus for test practitioner certification:y p

www1.bcs.org.uk/DocsRepository/00900/913/docs/practsyll.pdf
Look at the IEEE’s Software Engineering Body of Knowledge section on

f isoftware testing
www.swebok.org

These, and many other presentations, could have been written almost as These, and many other presentations, could have been written almost as
well in 1990 or even 1980.
I think it’s time to reject most of these ideas and move on.

Ongoing Revolution—October 2007 Copyright © Cem Kaner 5

Old Views
I wrote Testing Computer Software to foster rebellion against some of I wrote Testing Computer Software to foster rebellion against some of
these ideas and to strip away many of the excuses that people use to
justify bad testing, excuses like these:

E You can't do good testing without a specification– Excuse: You can t do good testing without a specification.

– Excuse: You can't do good testing without reviewing the code.

E You can't do good testing if the programmers keep– Excuse: You can't do good testing if the programmers keep
adding functionality while you test.

– Excuse: You can't do good testing if you get along too well with
the programmers.

– Excuse: You can’t test parafunctional aspects of a program (like
performance, usability, security) because they are out of p , y, y) y
testers’ scope.

Oh, Pshaw!

Ongoing Revolution—October 2007 Copyright © Cem Kaner 6

Of course you can do good testing under these circumstances.

Oldies but goodies of the revolution
I wrote TCS to highlight what I saw as best practices (of the 1980’s) in
Silicon Valley, which conflicted with much received wisdom of the time:

• Testers must be able to test well without authoritative Testers must be able to test well without authoritative
(complete, trustworthy) specifications. I coined the phrase,
exploratory testing, to describe a survival skill.

Ongoing Revolution—October 2007 Copyright © Cem Kaner 7

Oldies but goodies of the revolution
• Testing should address all areas of potential customer

dissatisfaction, not just functional bugs. Because matters of
usability, performance, localizability, supportability, (these days, y p y pp y (y
security) are critical factors in the acceptability of the product, test
groups should become skilled at dealing with them.

Ongoing Revolution—October 2007 Copyright © Cem Kaner 8

Oldies but goodies of the revolution
• It is neither uncommon nor unethical to defer (choose not

to fix) known bugs. The tester should research a bug or design
weakness well enough to present that bug in its harshest light. You g p g g
have done your job well if the project team understands the potential
consequences of shipping with this bug when they choose to defer it.

Ongoing Revolution—October 2007 Copyright © Cem Kaner 9

Oldies but goodies of the revolution
• Testers are not the primary advocates of quality. Testers are

investigators. We help others understand the state of the product or
process under test. p

• Just because we gather the evidence doesn’t mean we own the
decisions or have any greater role in them than the other key
stakeholdersstakeholders.

Ongoing Revolution—October 2007 Copyright © Cem Kaner 10

More oldies but goodies
• The decision to automate a regression test is a matter of

economics, not principle.
– It is profitable to automate a test (including paying the p (g p y g

maintenance costs as the program evolves) if you would run the
manual test so many times that the net cost of automation is less
than manual execution.

– Many manual tests are not worth automating because they
provide information that we don’t need to collect repeatedly.

Ongoing Revolution—October 2007 Copyright © Cem Kaner 11

More oldies but goodies
• Automation isn’t just automated regression testing

– Other tests are worth automating—even if you only run them
once—because the cost of doing them manually is too high and g y g
the information value of the test justifies the expense.

– Automation and regression involve different considerations.

Ongoing Revolution—October 2007 Copyright © Cem Kaner 12

More oldies but goodies
• Testers must be able to operate effectively within any

software development lifecycle. The project manager gets to
decide what lifecycle is best for her project. That’s why they call her
“project manager.”
– Why do so many testers (and test consultants) push the waterfall

model (including the V) so insistently?(g) y
° phased development models push people to lock down

decisions long before vital information is in, creating both bad
decisions and resistance to later improvementdecisions and resistance to later improvement.

Ongoing Revolution—October 2007 Copyright © Cem Kaner 13

More oldies but goodies
• Testers should design new tests throughout the project,

even after feature freeze.
– All through the project, we will keep learning new things about g p j p g g

the product, its market, its environment, and its risks.
– For as long as we are learning new risks, we should be creating

new tests.

Ongoing Revolution—October 2007 Copyright © Cem Kaner 14

More oldies but goodies
• We cannot measure the thoroughness of testing by

computing simple coverage metrics or by creating at least
one test per requirement or specification assertion.
– Thoroughness of testing means thoroughness of mitigation of risk.
– Every different way that the program could fail creates a role for

another test.

Ongoing Revolution—October 2007 Copyright © Cem Kaner 15

Old Views: Mea Culpa
Even though TCS rejected several of the leading excuses IEven though TCS rejected several of the leading excuses, I
adopted much of the rest of the received wisdom:
• Such as the idea that the sole purpose of testing is to find bugsp p g g

Ongoing Revolution—October 2007 Copyright © Cem Kaner 16

Old Views: Mea Culpa
Even though TCS rejected several of the leading excuses I wroteEven though TCS rejected several of the leading excuses, I wrote
some critiques too gently for the average reader to realize that I
thought the process was broken:
• Such as the idea that a test isn’t meaningful unless you specify

expected results
• Such as the idea that we should create detailed procedural• Such as the idea that we should create detailed, procedural

test documentation
• Such as the idea that we should develop the bulk of test Suc as t e dea t at we s ou d deve op t e bu o test

materials fairly early in the project
• Such as the idea that consistency of vocabulary is at all

important in our field, or that knowledge of vocabulary is at
all relevant to decided whether a tester is any good, compared
to the urgent need for judgment and skill.

Ongoing Revolution—October 2007 Copyright © Cem Kaner 17

g j g

Old Views: Mea Culpa
Even though TCS rejected several of the leading excuses I stayedEven though TCS rejected several of the leading excuses, I stayed
silent because I wasn’t sufficiently confident of my conclusions:
• Such as heavy reliance on GUI regression test automationy g
• Such as the chronic disconnects between IEEE standards and

actual industry practice
• Such as the invalidity of most of the test-related metrics then

(and now) in use

Ongoing Revolution—October 2007 Copyright © Cem Kaner 18

Time for a Change
After publishing TCS 2 0 I became increasingly skeptical of traditionalAfter publishing TCS 2.0, I became increasingly skeptical of traditional
testing:
• Too much of it doesn’t scale to the ever-larger programs we are

creating It’s great to lovingly handcraft and thoroughly documentcreating. It s great to lovingly handcraft and thoroughly document
individual tests, but how much of this can you do when a cell phone
comes with 2 million lines of code?

• It ignores the problem that testing is such a huge (infinite) task that• It ignores the problem that testing is such a huge (infinite) task that
we have to live by our wits in figuring out the right tradeoffs.

• In glorifying a failing proceduralism over skilled craft, it pushes bright
l i t th ti lf f lfilli h th tpeople into other areas, creating a self-fulfilling prophesy that our

field attracts only low skill people.
• It fosters a toxic relationship between testers, programmers and

j tproject managers.
In 1999, I decided to subject my views on testing to a fundamental
reappraisal, and to drive toward training a new generation of test

Ongoing Revolution—October 2007 Copyright © Cem Kaner 19

architects. To do this, I went back to school. . .

A Fresh Breeze
In the 1990’s, many members of the programming community finally
decided to strike back in their own way at the ineffectiveness (and
unpleasantness) of the test groups they worked with.
They decided that if they couldn’t rely on testers for good testing,
they’d have to take back the responsibility for testing, themselves.
The results wereThe results were
• Test-driven programming
• Glass-box integration test tools, such as FIT
• A variety of other open source test tool initiatives
• A renewed distinction between programmer-testing and application-

testing or customer side testingtesting or customer-side testing.
Sadly, in my view, even though the programmer-related testing ideas
have been very valuable, the “agile” ideas about “customer” testing are
d l ld (d l)

Ongoing Revolution—October 2007 Copyright © Cem Kaner 20

disappointingly old (and stale).

The Test-Related Labor Market
Lots of advice that testers should work as
programmers
• Unit and API test (independent or pair with (p p

programmers)
• Write GUI regression test suites

W i f • Write performance tests
• Write test tools
• Write test code to drive devices or other Write test code to drive devices or other

systems
• Write non-regression tests that use technology

to reach beyond what humans can do manually to reach beyond what humans can do manually,
– high volume (long sequence) testing
– high precision testing

Ongoing Revolution—October 2007 Copyright © Cem Kaner

g p g
– high diversity (directed search) testing

21

Our Labour Pool – data from 2004
• Nationally, CS enrolment is down 70% since 2001

•90,000 new software development
 positions per year (plus 29,000 support & hw positions).

•60,000 computing B.Sc. grads 60,000 computing B.Sc. grads
– (including computer engineers)

• 20,208 M.Sc. (many have B.Sc. already)
• 40,000 Associate degree (many go on to B.Sc.)
• Many of these are not from the top-ranked universities (2004 data):

– DeVry Institute of Tech 3894 BSCS graduatesDeVry Institute of Tech 3894 BSCS graduates
– University of Phoenix 2552
– American Intercontinental 1060

Ongoing Revolution—October 2007 Copyright © Cem Kaner 22

– Strayer University 993

Labour Pool
U.S. tech job growth continues
U.S. IT employment continues on a growth path, rising 6% from a year
ago to reach 3.68 million employed, according to the most-recent g p y , g
Bureau of Labor Statistics employment survey. IT unemployment was
2%, according to an average of the past four quarters of BLS data,
including its most recent third-quarter results. That unemployment rate g q p y
is down from 2.2% in 2006 and as high as 5.6% in the third quarter of
2003. The total IT workforce, employed and unemployed, also grew
about 6% from a year ago. The unemployment rate in management and y g p y g
professional jobs overall was also 2.0%. The biggest job growth
categories continue to be software engineers, computer scientists and
systems analysts, and IS managers. Software engineers, the largest
category, grew 8% from a year ago and make up a quarter of all IT jobs.
(InformationWeek 10/17/07)

Ongoing Revolution—October 2007 Copyright © Cem Kaner 23

Our Labour Pool #2
• My understanding is since 2004:

– open jobs have increased, while
CS enrolment has continued to significantly decrease– CS enrolment has continued to significantly decrease.

• We appear to have touched bottom and might grow back
significantly, but even if enrolment doubles in academic 2008-2009,
h f lk ’ d il 2012those folks won’t graduate until 2012.

Ongoing Revolution—October 2007 Copyright © Cem Kaner 24

Our Labour Pool #3
A CS degree is no guarantee of programming capability. I’ve visited
schools around the country over the past two years.
• Several schools emphasize theory over programming skill (a senior

f h l ld “F f d i professor at one school told me, “Few of our students can write a
working100-line program when they graduate”). This is also widely
perceived as a problem common to many CS graduates from India.
F CS S f E i i i h i (• Few CS or Software Engineering programmings emphasize (or even
expose students) to soft skills (interviewing, context assessment,
usability-oriented design, role playing, persuasive speaking and
writing). writing).

• Many courses in design and requirements analysis are essentially
tutorials in patterns, UML, and creation of massive template-driven
documentation.documentation.

• Many courses in software testing are broad and superficial.
• Another block of entrants into the field come from business schools,

but many graduates with degrees in “Information Systems” have

Ongoing Revolution—October 2007 Copyright © Cem Kaner 25

but many graduates with degrees in Information Systems have
minimal education in software development or assessment.

Our Labour Pool #4
What I think this means…
• Of technically proficient graduates interested in testing, most seem

to go to big publishers (Microsoft, Google) who aggressively recruit g g p (, g) gg y
them.

• The IT community is unlikely to meet its needs for new testers with
university graduate computer science majors who can write adequate university graduate computer science majors who can write adequate
code.

Ongoing Revolution—October 2007 Copyright © Cem Kaner 26

Labor Pool #5
• Will continue to include large portion of manual testers who have

weak backgrounds in computing
– 40,000 recent certifications by ISTQB, y Q

• The question will be how to hire and train the best people for a
combination of:

M l i i i– Manual testing positions
– GUI automation positions
– Non-GUI (e.g. toolbuilder or HVAT) automation positionsNon GUI (e.g. toolbuilder or HVAT) automation positions
– Glass-box testing and test-first programming positions

• The proportions might shift over time, but the four roles (and in
some companies, several other test-group roles) will continue.

Ongoing Revolution—October 2007 Copyright © Cem Kaner 27

Who should we hire?

For much of the past 30 years, many leaders in the testing community
have urged us to dumb our work down, make it more routine and then
cost-reduce it.

In my view, this often leads to serious inefficiency and weak testing.

Ongoing Revolution—October 2007 Copyright © Cem Kaner 28

Test groups should offer diverse, collaborating specialists
Test groups need people who understand

• the application under test,

th t h i l i t i hi h it ill (d th i t d • the technical environment in which it will run (and the associated
risks),

• the market (and their expectations, demands, and support needs),

• the architecture and mechanics of tools to support the testing effort,

• and the underlying implementation of the code.

You cannot find all this in any one person. You can build a group of
strikingly different people, encourage them to collaborate and cross-
train, and assign them to project areas that need what they know. g p j y

http://www.kaner.com/pdfs/JobsRev6.pdf

Ongoing Revolution—October 2007 Copyright © Cem Kaner 29

Back to the Purpose / Nature of Testing

• Bug-hunting is a very important testing task
• But it’s not the only oney
• What else is there?

Ongoing Revolution—October 2007 Copyright © Cem Kaner 30

A better definition

Testing is an empirical,
technical investigation
conducted to provide

quality-related informationq y
about a software product

to a stakeholderto a stakeholder

Ongoing Revolution—October 2007 Copyright © Cem Kaner 31

Defining Testing
Empirical
• We run experiments (tests). Code inspections are valuable, but they

are not tests.
technical
• We use technical means, including experimentation, logic,

h i d l l (i) d l mathematics, models, tools (testing-support programs), and tools
(measuring instruments, event generators, etc.)

investigation
• an organized and thorough search for information
• this is an active process of inquiry. We ask hard questions (aka run

hard test cases) and look carefully at the resultshard test cases) and look carefully at the results
provide quality-related information
• see next slide (information objectives)

Ongoing Revolution—October 2007 Copyright © Cem Kaner 32

(j)

Information Objectives
Find important bugs, to get them fixed

Assess the quality of the product

Help managers make release decisionsp g

Block premature product releases

Help predict and control costs of product support

Ch k i bili i h h dCheck interoperability with other products

Find safe scenarios for use of the product

Assess conformance to specifications

Certify the product meets a particular standard

Ensure the testing process meets accountability standards

Minimize the risk of safety related lawsuitsMinimize the risk of safety-related lawsuits

Help clients improve product quality & testability

Help clients improve their processes

Ongoing Revolution—October 2007 Copyright © Cem Kaner 33

Evaluate the product for a third party

Testing is not manufacturing QC
Software testing is more like design evaluation than
manufacturing quality control.
• A manufacturing defect appears in an individual instance of a • A manufacturing defect appears in an individual instance of a

product (like badly wired brakes in a car). It makes sense to look at
every instance in the same ways (regression tests) because any one
might fail in a given way even if the one before and the one after did might fail in a given way, even if the one before and the one after did
not.

• A design defect appears in every instance of the product. The
h ll f d i QC i t d t d th f ll f i li ti challenge of design QC is to understand the full range of implications

of the design, not to look for the same problem over and over.
By the way, Six Sigma is a manufacturing quality management
methodology. The “six sigmas” are six standard deviations surrounding
the mean of a probability distribution. I have never heard a rationale for
applying this to software. (I’ve seen the enthusiasm, but not the

h)

Ongoing Revolution—October 2007 Copyright © Cem Kaner 34

mathematics.)

The Concept of Inertia
INERTIA: The resistance to change that we build into a project.
The less inertia we build into a project, the more responsive the
development group can be to stakeholder requests for change (design p g p q g (g
changes and bug fixes).
• Intentional inertia:

– Change control boards– Change control boards
– User interface freezes

• Process-induced inertia: Costs of change imposed by the development
process

° rewrite the specification
° rewrite the testsrewrite the tests
° re-run all the tests

When testers introduce heavyweight practices to a project, they increase
th j t’ i ti d k it i t t t i t

Ongoing Revolution—October 2007 Copyright © Cem Kaner 35

the project’s inertia and make it more resistant to improvement.

Inertia #1 -- Procedural documentation of manual tests
The claim is that manual tests should be documented in great
procedural detail so they can be handed to less experienced or less
skilled testers, who will
• repeat the tests consistently, in the way they were intended,
• learn about test design from executing these tests, and

l h f i i i h • learn the program from testing it, using these tests.

Ongoing Revolution—October 2007 Copyright © Cem Kaner 36

Inertia #2 -- Expected results
Glen Myers pushed this point very effectively

• At IBM, testers created enormous test runs, but didn’t know how to
t f il i th i i t t R lt 35% f th f il i th fi ld spot failures in their printouts. Result--35% of the failures in the field

could be traced back to failures that were actually exposed by tests
run in the lab, but never recognized as failures by the testers.

• I’ve seen this too.

HOWEVER: I have also seen cases in which testers missed bugs because
h f d if i “ d” l i they were too focused on verifying “expected” results to notice a

failure the test had not been designed to address.

Ongoing Revolution—October 2007 Copyright © Cem Kaner 37

Inertia #2 -- Expected results
• There is value in documenting the intent of a test, including results or

behaviors to look for
– but it is important to do so in a way that keeps the tester p y p
– thinking and
– scanning for other results of the test
– instead of viewing the testing goal as verification against what is

written.
• A lot of testing involves working with the program to understand A lot of testing involves working with the program to understand

what it actually does-- whether what it does is appropriate or not.
• People (many, maybe most people) don’t understand specifications

and documentation just by reading them or drawing diagrams about and documentation just by reading them or drawing diagrams about
them. You often learn about something by doing things with it.

Ongoing Revolution—October 2007 Copyright © Cem Kaner 38

Inertia #2 -- Expected results vs Exploration
• A lot of testing involves working with the program to understand • A lot of testing involves working with the program to understand

what it actually does-- whether what it does is appropriate or not.
• People (many, maybe most people) don’t understand specifications

and documentation just by reading them or drawing diagrams about
them. You often learn about something by doing things with it.

• The idea of exploratory testing is:p y g
– that you recognize that you’re going to learn while you test,
– that you’re going to get more sophisticated as you learn,
– that you’ll interpret your tests differently and design your tests

differently as you learn more about the product, the market, the
variety of uses of the product, the risks, and the mistakes actually
made by the particular humans who write the code.

– So you build time and enthusiasm for doing research, test
development and test execution as parallel activities throughout

Ongoing Revolution—October 2007 Copyright © Cem Kaner

p p g
the project.

39

Inertia #2 -- Expected results
• As you learn what you learn, while you test, you may or may not flag

an individual result as noteworthy, worthy of reuse or re-execution.
• For many tests, by the time you come to understand what result you y , y y y

should expect, you’ve already gotten all the value you’re going to get
from that test.

Ongoing Revolution—October 2007 Copyright © Cem Kaner 40

Inertia #3 – Don’t design most tests early in development
Why would anyoneanyone want to spend most of their test design money
early in development?
• The earlier in the project, the less we know about how it can fail, and The earlier in the project, the less we know about how it can fail, and

so the less accurately we can prioritize

Ongoing Revolution—October 2007 Copyright © Cem Kaner 41

Don’t design most tests early in development
“Test then code” is fundamentally different from test first programmingTest then code is fundamentally different from test-first programming

Test then code

(“proactive testing”)

Test-first development

The tester creates many tests and then the
programmer codes

The programmer creates 1 test, writes code,
gets the code working, refactors, moves to
next test

Primarily acceptance, or system-level tests Primarily unit tests and low-level integration

Usual process inefficiencies and delays
(code, then deliver build, then wait for test
results, slow, costly feedback)

Near-zero delay, communication cost

Supports understanding of requirements Supports exploratory development of
architecture, requirements, & design

After 30 years still rarely done Widely (not universally but

Ongoing Revolution—October 2007 Copyright © Cem Kaner 42

After 30 years, still rarely done. Widely (not universally, but
increasingly) adopted

More on Test-Driven Development
• Provides a structure for working from examples, rather than from an

abstraction. (Supports a common learning / thinking style.)
• Provides concrete communication with future maintainers.
• Provides a unit-level regression-test suite (change detectors)

– support for refactoring
– support for maintenance

• Makes bug finding / fixing more efficient
N dt i t d t GUI t ti d b – No roundtrip cost, compared to GUI automation and bug
reporting.

– No (or brief) delay in feedback loop compared to external tester
loop

• Provides support for experimenting with the component library or
language features

Ongoing Revolution—October 2007 Copyright © Cem Kaner 43

g g

The value of unit testing
We can eliminate the need for a broad class of boring, routine, inefficient
system-level tests:
• Hunt & Thomas, Pragmatic Unit Testing, ofetn emphasize confirmatory tests,

such as giving the example of inserting a large value into a sorted list, and
confirming that it appears at the end of the list.

• We can test that method in many other ways, at the unit level.
– Try a huge value -- Try a huge list
– Try a maximum length list -- Try a max+1 length list
– Try a null value -- Insert into a null listy
– Try a value of wrong type -- Try a tied value
– Try a negative value -- Try a zero?

Try a value that should sort to the start of the list – Try a value that should sort to the start of the list.
– Exact middle of the list
– Exercise every error case in the method

Ongoing Revolution—October 2007 Copyright © Cem Kaner 44

Unit tests and system tests #1
Many automated UI tests are unit tests run at the system level.
• If the programmers do thorough unit testing

Based on their own test design or – Based on their own test design, or
– Based on a code analyzer / test generator (like Agitator)

• then apart from a sanity-check sample at the system level, we don’t p y p y
have to repeat these tests as system tests.

• Instead, we can focus on techniques that exercise the program more
broadly and more interestinglybroadly and more interestingly

Ongoing Revolution—October 2007 Copyright © Cem Kaner 45

Unit tests & system tests #2: An example

Many testing books (including TCS 2) treat domain testing (boundary /
equivalence analysis) as the primary system testing technique. To the q y) p y y g q
extent that it teaches us to do risk-optimized stratified sampling
whenever we deal with a large space of tests, domain testing offers
powerful guidance.
But the specific technique—checking single variables and combinations
at their edge values—is often handled well in unit and low-level
integration tests. These are much more efficient than system tests. g y
If the programmers are actually testing this way, then system testers
should focus on other risks and other techniques.
Wh h l d i h d i j b f i i When other people are doing an honest and serious job of testing in
their way, a system test group so jealous of its independence that it
refuses to consider what has been done by others is bound to waste
ti ti i l t t d th b i t iti t t

Ongoing Revolution—October 2007 Copyright © Cem Kaner 46

time repeating simple tests and thereby miss opportunities to try more
complex tests focused on harder-to-assess risks.

Unit regression doesn’t justify system regression
People who justifiably love unit testing preach that testers should invest
heavily in system test automation too.
Change-detectors at the code level and UI / System level regression g y g
tests are very distinct.
Change detectors

i i h h l d h TDD hi k h h h d i • writing these helped the TDD programmer think through the design
& implementation

• near-zero feedback delay and near-zero communication cost make
these tests a strong support for refactoring

System-level regression
• no support for implementation / design• no support for implementation / design
• run well after the code is put into a build that is released to testing

(long feedback delay)

Ongoing Revolution—October 2007 Copyright © Cem Kaner 47

• run by someone other than the programmer (feedback cost)

Cost/benefit the system regression tests
After they’ve been run a few times, a regression suite’s tests have one thing in
common: the program has passed them all.
In terms of information value, tests that offered new data and insights long ago,
are now just a bunch of tired old tests in a convenient to reuse heap are now just a bunch of tired old tests in a convenient-to-reuse heap.
Maintenance of UI / system-level tests is not free
• change the design discover the inconsistency discover the problem is

obsolescence of the test change the testobsolescence of the test change the test
So we have a cost/benefit analysis to consider carefully:
• What information will we obtain from re-use of this test?

Wh t i th l f th t i f ti ?• What is the value of that information?
• How much does it cost to automate the test the first time?
• How much maintenance cost for the test over a period of time?
• How much inertia does the maintenance create for the project?
• How much support for rapid feedback does the test suite provide for the

project?

Ongoing Revolution—October 2007 Copyright © Cem Kaner 48

Regression is not necessarily repetition
Procedural regression
• Do the same test over and over (reuse same tests each build)

Risk focused regressionRisk-focused regression
• Check for the same risks each build, but use different tests (e.g.

combinations of previous tests)
• See

http://www.testingeducation.org/BBST/BBSTRegressionTesting.html

Ongoing Revolution—October 2007 Copyright © Cem Kaner 49

Test automation isn’t
Automated regression testing is not automated testing:
• we automate the test execution, and a simple comparison of

expected and obtained resultsp
• we don’t automate the design or implementation of the test or the

assessment of the mismatch of results (when there is one)

Ongoing Revolution—October 2007 Copyright © Cem Kaner 50

What other computer-assistance would be valuable
• Tools to help create tests
• Tools to sort, summarize or evaluate test output or test results
• Tools (simulators) to help us predict results• Tools (simulators) to help us predict results
• Tools to build models (e.g. state models) of the software, from which

we can build tests and evaluate / interpret results
• Tools to vary inputs, generating a large number of similar (but not

the same) tests on the same theme, at minimal cost for the variation
• Tools to capture test output in ways that make test result replication Tools to capture test output in ways that make test result replication

easier
• Tools to expose the API to the non-programmer subject matter

expert improving the maintainability of SME designed testsexpert, improving the maintainability of SME-designed tests
• Support tools for parafunctional tests (usability, performance, etc.)

Ongoing Revolution—October 2007 Copyright © Cem Kaner 51

High volume automated testing
Interesting finding in load and performance testing--functional errors--the
program fails under load--from code that seemed to work fine when we ran
functional tests.
The failures often reflect long sequence bugs such as memory leaks memory The failures often reflect long-sequence bugs, such as memory leaks, memory
corruption, stack corruption, or other failures triggered by unexpected
combinations of features or data.
To find bugs like these intentionally, we can use a variety of high volume test g y y g
automation techniques.
• http://www.testingeducation.org/a/hvta.pdf

A “problem” with these tests: we don’t really have expected results. The
results we would list as expected for each test have no relationship to the
actual risks we’re trying to mitigate.
• In my consulting experience, I found that many test managers whose tests

come in neat well specified packages found it hard to even imagine high come in neat, well specified packages found it hard to even imagine high
volume test automation or consider the idea of applying it to their
situations.

• BUT THESE TESTS FIND PROBLEMS THAT ARE HARD TO FIND ANY

Ongoing Revolution—October 2007 Copyright © Cem Kaner 52

OTHER WAY

Testers may or may not work best in test groups
If you work in a test group, you probably get more testing training, more skilled y g p y p y g g g
criticism of your tests and reports, more attention to your test-related career path,
and stronger moral support if you speak unwelcome truths to power.
If you work in an integrated development group, you probably get more insight into
the development of the product more skilled criticism of the impact of your work the development of the product, more skilled criticism of the impact of your work,
more attention to your broad technical career path, more cross-training with
programmers, and less respect if you know lots about the application or its risks but
little about how to write code.
If you work in a marketing (customer-focused) group, you probably get more
training in the application domain and in the evaluation of product acceptability and
customer-oriented quality costs (such as support costs and lost sales), more
attention to a management-directed career path and more sympathy if you attention to a management-directed career path, and more sympathy if you
programmers belittle you for thinking more like a customer than a programmer.
Similarly, even if there is a cohesive test group, its character may depend on
whether it reports to an executive focused on testing, support, marketing,
programming, or something else.
There is no steady-state best place for a test group. Each choice has costs and
benefits. The best choice might be a fundamental reorganization every two years to
diversify the perspectives of the long term staff and the people who work with

Ongoing Revolution—October 2007 Copyright © Cem Kaner 53

diversify the perspectives of the long-term staff and the people who work with
them.

A Closing Shot at Common Testing Metrics
Very few companies have metrics programs today. But most companies y p p g y p
have tried them. Doesn’t that imply that most companies have
abandoned their metrics programs?
Why would they do that? Lazy? Stupid? Unprofessional?y wou t ey o t at? a y? Stup d? U p ofess o a ?
Maybe the metrics programs added no value or
negative value.
A ke roblem is that meas rement infl ences beha ior and not al a s A key problem is that measurement influences behavior, and not always
in the ways that you hope. (See Bob Austin’s Managing and Measuring
Performance in Organizations)
A h k bl i h f i i i l Another key problem is that software engineering metrics are rarely
validated. “Construct validity” (how do we know that this instrument
measures that attribute?) almost never appears in the CS and SWE
literature nor do discussions on determining the nature of the attribute literature, nor do discussions on determining the nature of the attribute
that we are trying to measure. As a result, our metrics often fail to
measure what we assert they measure, and they are prime candidates for
Austin-style side effects.

Ongoing Revolution—October 2007 Copyright © Cem Kaner 54

Austin style side effects.
Kaner / Bond at http://www.kaner.com/pdfs/metrics2004.pdf)

Summary
Testing objectives vary, legitimately. Our testing strategy should be optimized for our g j y, g y g gy p
specific project’s objectives.
“Best practices” can be toxic in your context. Do what makes sense, not what is well
marketed.
We test in the real world we can provide competent services under challenging We test in the real world, we can provide competent services under challenging
circumstances.
Modern unit testing supports initial development of the program and its maintenance. It
also makes it possible for the system tests to be run far more efficiently and effectively.
B h di i i / ll b iBut that coordination requires tester/programmer collaboration.
UI level automation is high maintenance and must be designed for maintainability.
Extensive GUI automation often creates serious inertia and may expose few bugs and
little useful information.
Automation below the UI level is often cheaper to implement, needs less maintenance
and provides rapid feedback to the programmers.
The value of a test lies in the information it provides. If the information value of a GUI-
level test won’t exceed its automation cost you shouldn’t automate itlevel test won t exceed its automation cost, you shouldn t automate it.
Testing is investigation. As investigators, we must make the best use of limited time and
resources to sample wisely from a huge population of potential tasks. Much of our
investigation is exploratory--we learn more as we go, and we continually design tests to
reflect our increasing knowledge Only some of these tests will be profitably reusable

Ongoing Revolution—October 2007 Copyright © Cem Kaner 55

reflect our increasing knowledge. Only some of these tests will be profitably reusable.

About Cem Kaner
• Professor of Software Engineering, Florida Tech
• Research Fellow at Satisfice, Inc.

I’ve worked in all areas of product development (programmer, tester, p p (p g , ,
writer, teacher, user interface designer, software salesperson,
organization development consultant, as a manager of user
documentation, software testing, and software development, and as an

 f i h l f f li) attorney focusing on the law of software quality.)
Senior author of three books:
• Lessons Learned in Software Testing (with James Bach & Bret g (J

Pettichord)
• Bad Software (with David Pels)
• Testing Computer Software (with Jack Falk & Hung Quoc Nguyen).Testing Computer Software (with Jack Falk & Hung Quoc Nguyen).

My doctoral research on psychophysics (perceptual measurement)
nurtured my interests in human factors (usable computer systems) and
measurement theory.

Ongoing Revolution—October 2007 Copyright © Cem Kaner 56

y

