
Douglas Hoffman & Cem Kaner Copyright © 2010 1

Exploratory Test Automation

CAST August 3, 2010

Douglas Hoffman
Cem Kaner

Douglas Hoffman & Cem Kaner Copyright © 2010

Suppose you decided
to never run another
regression test. What
kind of automation
would you do?

2

Douglas Hoffman & Cem Kaner Copyright © 2010

Exploratory software testing
• is a style of software testing
• that emphasizes the personal freedom and responsibility
• of the individual tester
• to continually optimize the value of her work
• by treating

– test-related learning,
– test design,
– test execution, and
– test result interpretation

• as mutually supportive activities
• that run in parallel throughout the project.

Douglas Hoffman & Cem Kaner Copyright © 2010

• ET is an approach to testing, not a technique
– You can use any test technique in an exploratory

way or a scripted way
– You can work in an exploratory way at any point in

testing
• Effective testing requires the application of

knowledge and skill
– This is more obvious (but not more necessary) in the

exploratory case
– Training someone to be an explorer involves greater

emphasis on higher levels of knowledge

Douglas Hoffman & Cem Kaner Copyright © 2010
5

What Is Exploratory Test
Automation?

• Computer-assisted testing
• That supports learning of new information
• About the quality of the software under test

Typical Testing Tasks
Analyze product & its risks

– benefits & features
– risks in use
– market expectations
– interaction with external S/W
– diversity / stability of

platforms
– extent of prior testing
– assess source code

Develop testing strategy
– pick key techniques
– prioritize testing foci

Design tests
– select key test ideas
– create tests for each idea

Run test first time (often by
hand)

If we create regression
tests:
• Capture or code steps once

test passes
• Save “good” result
• Document test / file
• Execute the test

– Evaluate result
• Report failure or
• Maintain test case

Evaluate results
– Troubleshoot failures
– Report failures

Manage test environment
– set up test lab
– select / use

hardware/software
configurations

– manage test tools
Keep archival records

– what tests have we run
– trace tests back to specs

This contrasts the variety of tasks
commonly done in testing with the
narrow reach of UI-level regression

automation. This list is illustrative, not
exhaustive.

Douglas Hoffman & Cem Kaner Copyright © 2010

Automating system-level testing
tasks

• No tool covers this entire range of tasks
• In automated regression testing:

– we automate the test execution, and
a simple comparison of expected
and obtained results

– we don’t automate the design or
implementation of the test or the
assessment of the mismatch of
results (when there is one) or the
maintenance (which is often VERY
expensive).

Automated
system testing
doesn't mean

It means

Douglas Hoffman & Cem Kaner Copyright © 2010

Other computer-assistance?
• Tools to help create tests
• Tools to sort, summarize or evaluate test output or test results
• Tools (simulators) to help us predict results
• Tools to build models (e.g. state models) of the software, from which we

can build tests and evaluate / interpret results
• Tools to vary inputs, generating a large number of similar (but not the

same) tests on the same theme, at minimal cost for the variation
• Tools to capture test output in ways that make test result replication easier
• Tools to expose the API to the non-programmer subject matter expert,

improving the maintainability of SME-designed tests
• Support tools for parafunctional tests (usability, performance, etc.)

» Harry Robinson’s tutorial yesterday provided a lot of thinking along these lines

Douglas Hoffman & Cem Kaner Copyright © 2010

Primary driver of our designs
• The key factor that motivates us or

makes the testing possible.
– Theory of error

• We’re hunting a class of bug that we have no
better way to find

– Available oracle
• We have an opportunity to verify or validate a

behavior with a tool

– Ability to drive long sequences
• We can execute a lot of these tests cheaply.

9

Douglas Hoffman & Cem Kaner Copyright © 2010

More on … Theory of Error
• Computational errors
• Communications problems

– protocol error
– their-fault interoperability failure

• Resource unavailability or corruption, driven by
– history of operations
– competition for the resource

• Race conditions or other time-related or thread-related errors
• Failure caused by toxic data value combinations

– that span a large portion or a small portion of the data space
– that are likely or unlikely to be visible in "obvious" tests

based on customer usage or common heuristics

10

Douglas Hoffman & Cem Kaner Copyright © 2010

More on … Available Oracle

• Reference program
• Model that predicts results
• Embedded or self-verifying data
• Known constraints
• Diagnostics

» For more details: See our Appendix for an
excerpt from the new Foundations course!
(Brought to you by the letter “B”)

11

Douglas Hoffman & Cem Kaner Copyright © 2010

Additional Considerations
Observation

What enhances or constrains our ability to view behavior or
results?

Troubleshooting support
Failure triggers what further data collection?

Notification
How/when is failure reported?

Retention
In general, what data do we keep?

Maintenance
How are tests / suites updated / replaced?

Identification of relevant contexts
Under what circumstances is this approach relevant/desirable?

12

Douglas Hoffman & Cem Kaner Copyright © 2010

Some Examples of
Exploratory Test Automation

1. Disk buffer size
2. Simulate events with diagnostic probes
3. Database record locking
4. Long sequence regression testing
5. Function equivalence testing (sample or exhaustive comparison to

a reference function)
6. Functional testing in the presence of background load
7. Hostile data stream testing
8. Simulate the hardware system under test (compare to actual system)
9. Comparison to self-verifying data
10. Comparison to a computational or logical model or some other oracle
11. State-transition testing without a state model (dumb monkeys)
12. State-transition testing using a state model (terminate on failure rather than after

achieving some coverage criterion)
13. Random inputs to protocol checkers

See Kaner, Bond, McGee, www.kaner.com/pdfs/highvolCSTER.pdf

Douglas Hoffman & Cem Kaner Copyright © 2010
14

Disk Buffer Size

• Testing for arbitrary sized buffer writes and
reads

• Generate random sized records with random
data

• Write records to disk
• Read back records
• Compare written with read data

Simulate Events with Diagnostic Probes
• 1984. First phone on the market with an LCD display.
• One of the first PBX's with integrated voice and data.
• 108 voice features, 110 data features. Simulate

traffic on
system, with
• Settable

probabilities
of state
transitions

• Diagnostic
reporting
whenever a
suspicious
event
detected

Douglas Hoffman & Cem Kaner Copyright © 2010
16

Database Record Locking
• Create large random set of records
• Launch several threads to

– Select a random record
– Open record exclusive for random time, or
– Open record shared for random time

Douglas Hoffman & Cem Kaner Copyright © 2010

Long-sequence regression
• Tests taken from the pool of tests the program has passed in

this build.
• The tests sampled are run in random order until the software

under test fails (e.g crash).
• Typical defects found include timing problems, memory

corruption (including stack corruption), and memory leaks.
• Recent (2004) release: 293 reported failures exposed 74 distinct

bugs, including 14 showstoppers.

• Note:
– these tests are no longer testing for the failures they were designed to expose.
– these tests add nothing to typical measures of coverage, because the statements,

branches and subpaths within these tests were covered the first time these tests
were run in this build.

Douglas Hoffman & Cem Kaner Copyright © 2010
18

Function Equivalence Testing
• MASPAR (the Massively Parallel computer, 64K

parallel processors).
• The MASPAR computer has several built-in

mathematical functions. We’re going to consider the
Integer square root.

• This function takes a 32-bit word as an input. Any bit
pattern in that word can be interpreted as an integer
whose value is between 0 and 232-1. There are
4,294,967,296 possible inputs to this function.

• Tested against a reference implementation of square
root

Douglas Hoffman & Cem Kaner Copyright © 2010

Function Equivalence Test
• The 32-bit tests took the computer only 6 minutes to

run the tests and compare the results to an oracle.
• There were 2 (two) errors, neither of them near any

boundary. (The underlying error was that a bit was
sometimes mis-set, but in most error cases, there
was no effect on the final calculated result.) Without
an exhaustive test, these errors probably wouldn’t
have shown up.

• For 64-bit integer square root, function equivalence
tests involved random sample rather than exhaustive
testing because the full set would have required 6
minutes x 232 tests.

19

This tests for equivalence of functions,
but it is less exhaustive than it looks

Program state

System state

Configuration and system resources

Cooperating processes, clients or servers

System state

Impacts on connected devices / resources

To cooperating processes, clients or servers

Program state, (and uninspected outputs)

System
under

test

Reference
function

Monitored outputs
Intended inputs

Program state

System state

Configuration and system resources

Cooperating processes, clients or servers

Program state, (and uninspected outputs)

System state

Impacts on connected devices / resources

To cooperating processes, clients or servers

Intended inputs Monitored outputs

Douglas Hoffman & Cem Kaner Copyright © 2010

Can you specify your test configuration?
• Comparison to a reference function is fallible. We

only control some inputs and observe some results
(outputs).

• For example, do you know whether test &
reference systems are equivalently configured?
• Does your test documentation specify ALL the

processes running on your computer?
• Does it specify what version of each one?
• Do you even know how to tell:

• What version of each of these you are
running?

• When you (or your system) last updated
each one?

• Whether there is a later update?

Douglas Hoffman & Cem Kaner Copyright © 2010

Functional Testing in the
Presence of Background Load

• Alberto Savoia ran a series of functional tests
– No failures

• Increase background load, replicate the tests
– Initial load increase, no effect
– As load increased significantly, Savoia found an

exponential increase in number of functional
failures

22

Douglas Hoffman & Cem Kaner Copyright © 2010

Hostile Data Stream Testing
• Pioneered by Alan Jorgensen (FIT, recently retired)
• Take a “good” file in a standard format (e.g. PDF)

– Corrupt it by substituting one string (such as a really, really
huge string) for a much shorter one in the file

– Feed it to the application under test
– Can we overflow a buffer?

• Corrupt the “good” file in thousands of different ways, trying
to distress the application under test each time.

• Jorgenson and his students showed serious security problems in
some products, primarily using brute force techniques.

• Method seems appropriate for application of genetic algorithms
or other AI to optimize search.

23

Douglas Hoffman & Cem Kaner Copyright © 2010
24

Summary

• Not all automated tests have to do
the same thing each time

• Many different ways to explore
using automation
– Looking faster and more deeply

– Working in areas not humanly
accessible

From the

Foundations of Software Testing Course

2nd Edition

25
Douglas Hoffman & Cem Kaner Copyright © 2010

We often hear that most (or all) testing
should be automated.
• Automated testing depends on our

ability to programmatically detect
when the software under test fails a
test.

• Automate or not, you must still
exercise judgment in picking risks to
test against and interpreting the
results.

• Automated comparison-based testing
is subject to false alarms and misses.

26

Our ability to
automate testing
is fundamentally
constrained by
our ability to
create and use
oracles.

• Do research to understand the real-world expectations
(what we should expect from this product, this product’s
competitors, previous versions of this product, etc.)

• Design tests to check the match to our expectations –
OR—

• Evaluate the program and then write bug
reports that explain ways in which we are disappointed
with the product in terms of mismatch to our expectations
(with description of the research basis for those
expectations)

27

Description Advantages Disadvantages

No Oracle • Doesn’t explicitly check
results for correctness
(“Run till crash”)

• Can run any amount of data
(limited by the time the SUT takes)

• Useful early in testing. We
generate tests randomly or from
an model and see what happens

• Notices only spectacular
failures

• Replication of sequence
leading to failure may
be difficult

Complete
Oracle

• Authoritative
mechanism for
determining whether
the program passed or
failed

• Detects all types of errors
• If we have a complete oracle, we

can run automated tests and check
the results against it

• This is a mythological
creature: software
equivalent of a unicorn

Heuristic
Consistency
Oracles

Consistent with
• within product
• comparable products
• history
• our image
• claims
• specifications or

regulations
• user expectations
• purpose

• We can probably force-fit most or
all other types of oracles into this
structure (classification system for
oracles)

• James Bach thinks it is really cool
• The structure illustrates ideas for

test design and persuasive test
result reporting

• The structure seems too
general for some
students (including some
experienced
practitioners).

• Therefore, the next slides
illustrate more narrowly-
defined examples,
inspired by notes from
Doug Hoffman

28

29

Consistent within product: Function behavior
consistent with behavior of comparable functions
or functional patterns within the product.
Consistent with comparable products: Function
behavior consistent with that of similar functions
in comparable products.
Consistent with history: Present behavior
consistent with past behavior.
Consistent with our image: Behavior consistent
with an image the organization wants to project.
Consistent with claims: Behavior consistent with
documentation or ads.
Consistent with specifications or regulations:
Behavior consistent with claims that must be met.
Consistent with user’s expectations: Behavior
consistent with what we think users want.
Consistent with Purpose: Behavior consistent
with product or function’s apparent purpose.

All of these are
heuristics. They are
useful, but they are
not always correct
and they are not

always consistent
with each other.

Description Advantages Disadvantages

Partial • Verifies only some aspects of the
test output.

• All oracles are partial oracles.

• More likely to exist than
a Complete Oracle

• Much less expensive to
create and use

• Can miss systematic
errors

• Can miss obvious errors

Constraints Checks for
• impossible values or
• Impossible relationships
Examples
• ZIP codes must be 5 or 9 digits
• Page size (output format) must not

exceed physical page size (printer)
• Event 1 must happen before Event 2
• In an order entry system, date/time

correlates with order number

• The errors exposed are
probably straightforward
coding errors that must
be fixed

• This is useful even though
it is insufficient

• Catches some obvious
errors but if a value (or
relationship between
two variables’ values) is
incorrect but not
obviously wrong, the
error is not detected.

30

Description Advantages Disadvantages

Regression
Test Oracle

• Compare results of
tests of this build with
results from a previous
build. The prior results
are the oracle.

• Verification is often a
straightforward comparison

• Can generate and verify large
amounts of data

• Excellent selection of tools to
support this approach to
testing

• Verification fails if the
program’s design changes
(many false alarms). (Some
tools reduce false alarms)

• Misses bugs that were in
previous build or are not
exposed by the comparison

Self-Verifying
Data

• Embeds correct answer
in the test data (such
as embedding the
correct response in a
message comment
field or the correct
result of a calculation
or sort in a database
record)

• CRC, checksum or
digital signature

• Embedded RNG seed
(recover original data)

• Allows extensive post-test
analysis

• Does not require external
oracles

• Verification is based on
contents of the message or
record, not on user interface

• Answers are often derived
logically and vary little with
changes to the user interface

• Can generate and verify large
amounts of complex data

• Must define answers and
generate messages or records
to contain them

• In protocol testing (testing
the creation and sending of
messages and how the
recipient responds), if the
protocol changes we might
have to change all the tests

• Misses bugs that do not
cause mismatching result
fields.

31

32

• A model is a simplified, formal representation of a
relationship, process or system. The simplification makes
some aspects of the thing modeled clearer, more visible, and
easier to work with.

• All tests are based on models, but many of those models are
implicit. When the behavior of the program “feels wrong” it
is clashing with your internal model of the program and how
it should behave).

33

• The physical process being emulated, controlled or analyzed by the
software under test

• The business process being emulated, controlled or analyzed by the
software under test

• The software being emulated, controlled, communicated with or
analyzed by the software under test

• The device(s) this program will interact with
• The reactions or expectations of the stakeholder community
• The uses / usage patterns of the product
• The transactions that this product participates in
• The user interface of the product
• The objects created by this product

34

• Capabilities

• Preferences

– Competitive analysis

– Support records

• Focused chronology

– Achievement of a task or
life history of an object or
action

• Sequences of actions

– Such as state diagrams or
other sequence diagrams

– Flow of control

• Flow of information
– Such as data flow diagrams or

protocol diagrams or maps
• Interactions / dependencies

– Such as combination charts or
decision trees

– Charts of data dependencies
– Charts of connections of parts of a

system
• Collections

– Such as taxonomies or parallel lists
• Motives

– Interest analysis: Who is affected
how, by what?

35

• The representation is simpler than what is modeled: It
emphasizes some aspects of what is modeled while hiding
other aspects

• You can work with the representation to make descriptions
or predictions about the underlying subject of the model

• Using the model is easier or more convenient to work with,
or more likely to lead to new insights than working with the
original.

Description Advantages Disadvantages

State Model • We can represent programs
as state machines. At any
time, the program is in one
state and (given the right
inputs) can transition to
another state. The test
provides input and checks
whether the program
switched to the correct state

• Good software exists to
help test designer build
the state model

• Excellent software exists
to help test designer
select a set of tests that
drive the program
through every state
transition

• Maintenance of the state
machine (the model) can be
very expensive if the
program UI is changing

• Does not (usually) try to
drive the program through
state transitions considered
impossible

• Errors that show up in some
other way than bad state
transition can be invisible to
the comparator

Theoretical
(e.g. Physics
or Chemical)
Model

• We have theoretical
knowledge of the proper
functioning of some parts of
the SUT. For example, we
might test the program’s
calculation of a trajectory
against physical laws.

• Theoretically sound
evaluation

• Comparison failures are
likely to be seen as
important

• Theoretical models (e.g.
physics models) are
sometimes only
approximately correct for
real-world situations

36

Description Advantages Disadvantages

Business
Model

• We understand what is
reasonable in this type of
business. For example,
• We might know how to

calculate a tax (or at least
that a tax of $1 is
implausible if the taxed
event or income is $1
million).

• We might know inventory
relationships. It might be
absurd to have 1 box top
and 1 million bottoms.

• These oracles are probably
expressed as equations or
as plausibility-inequalities
(“it is ridiculous for A to
be more than 1000 times
B”) that come from
subject-matter experts.
Software errors that violate
these are probably
important (perhaps central
to the intended benefit of
the application) and likely
to be seen as important

• There is no completeness
criterion for these models.

• The subject matter expert
might be wrong in the scope
of the model (under some
conditions, the oracle should
not apply and we get a false
alarm)

• Some models might be only
temporarily true

Interaction
Model

• We know that if the SUT
does X, some other part of
the system (or other system)
should do Y and if the other
system does Z, the SUT
should do A.

• To the extent that we can
automate this, we can test
for interactions much more
thoroughly than manual
tests

• We are looking at a slice of
the behavior of the SUT so
we will be vulnerable to
misses and false alarms

• Building the model can take
a lot of time. Priority
decisions are important.

37

Description Advantages Disadvantages

Mathematical
Model

• The predicted value can be calculated
by virtue of mathematical attributes of
the SUT or the test itself. For example:
• The test does a calculation and then

inverts it. (The square of the square
root of X should be X, plus or minus
rounding error)

• The test inverts and then inverts a
matrix

• We have a known function, e.g. sine,
and can predict points along its path

Good for
• mathematical

functions
• straightforward

transformations
• invertible operations

of any kind

• Available only for
invertible operations or
computationally
predictable results.

• To obtain the predictable
results, we might have
to create a difficult-to-
implement reference
program.

Statistical • Checks against probabilistic predictions,
such as:
• 80% of online customers have

historically been from these ZIP
codes; what is today’s distribution?

• X is usually greater than Y
• X is positively correlated with Y

• Allows checking of
very large data sets

• Allows checking of
live systems’ data

• Allows checking
after the fact

• False alarms and misses
are both likely (Type 1
and Type 2 errors)

• Can miss obvious errors

38

Description Advantages Disadvantages

Data Set with
Known
Characteristics

• Rather than testing
with live data, create
a data set with
characteristics that you
know thoroughly.
Oracles may or may
not be explicitly built
in (they might be) but
you gain predictive
power from your
knowledge

• The test data exercise the program
in the ways you choose (e.g. limits,
interdependencies, etc.) and you (if
you are the data designer) expect
to see outcomes associated with
these built-in challenges

• The characteristics can be
documented for other testers

• The data continue to produce
interesting results despite (many
types of) program changes

• Known data sets do not
themselves provide
oracles

• Known data sets are
often not studied or not
understood by
subsequent testers
(especially if the creator
leaves) creating Cargo
Cult level testing.

Hand Crafted • Result is carefully
selected by test
designer

• Useful for some very complex SUTs
• Expected result can be well

understood

• Slow, expensive test
generation

• High maintenance cost
and need

Human • A human decides
whether the program
is behaving acceptably

• Sometimes this is the only way.
“Do you like how this looks?” “Is
anything confusing?”

• Slow
• Subjective
• Not necessarily credible

or authoritative

39

• Test oracles can only sometimes provide us with
authoritative failures.

• Test oracles cannot tell us whether the program has passed
the test, they can only tell us it has not obviously failed.

• Oracles subject us to two possible classes of errors:
– Miss: The program fails but the oracle doesn’t expose it
– False Alarm: The program did not fail but the oracle

signaled a failure

40

Tests do not provide
complete information.

They provide partial
information that might

be useful.

	Exploratory Test Automation
	Slide Number 2
	Exploratory software testing
	Slide Number 4
	What Is Exploratory Test Automation?
	Typical Testing Tasks
	Automating system-level testing tasks
	Other computer-assistance?
	Primary driver of our designs
	More on … Theory of Error
	More on … Available Oracle
	Additional Considerations
	Some Examples of �Exploratory Test Automation
	Disk Buffer Size
	Simulate Events with Diagnostic Probes
	Database Record Locking
	Long-sequence regression
	Function Equivalence Testing
	Function Equivalence Test
	This tests for equivalence of functions, �but it is less exhaustive than it looks
	Can you specify your test configuration?
	Functional Testing in the Presence of Background Load
	Hostile Data Stream Testing
	Summary
	Appendix: More Notes on Oracles
	Oracles & test automation
	You can use all of the oracles in similar ways:
	Another look at oracles (Based on notes from Doug Hoffman)
	Consistency oracles
	More types of oracles (Based on notes from Doug Hoffman)
	More types of oracles (Based on notes from Doug Hoffman)
	Modeling
	What might we model in an oracle?
	What aspects of the things we model might guide our creation of a model?
	What makes these models, models?
	More types of oracles (Based on notes from Doug Hoffman)
	More types of oracles (Based on notes from Doug Hoffman)
	More types of oracles (Based on notes from Doug Hoffman)
	Slide Number 39
	Summing up …

