Experiments with High Volume Test Automation

Pat McGee
Florida Institute of Technology

Computer Sciences Department
150 W. University Bivd.
Melbourne, FL 32901

321-409-5521

jpmegee @cs.fitedu
ABSTRACT

We are working with a broad class of testing techniques we
collectively call High Volume Test Automation (HVTA). The
essence of HVTA techniques is automated execution and
evaluation of large numbers of tests, for the purpose of
exposing functional errors that are otherwise hard to find.
These techniques are not widely used in industry, but we
believe they have the potential to help us substantially
increase the reliability of software.

We propose to find existing industry HVTA projects, write
informal case studies of them, create our own tools to
implement the technique, and apply our tool in a case study of
one or more open source projects.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging —
testing tools..

General Terms
Reliability, Security, Verification.

Keywords
Software Testing, High Volume Test Automation, Regression
Testing.

1. INTRODUCTION

We are working with a broad class of testing techniques we
collectively call High Volume Test Automation (HVTA). The
essence of HVTA techniques is automated execution and
evaluation of large numbers of tests, for the purpose of
exposing functional errors that are otherwise hard to find.

We believe HVTA techniques can find certain types of errors
much better than most traditional test techniques. These types
include buffer overruns, special cases, timing related errors,
corrupt memory or stack, memory or resource leaks, and
resource exhaustion errors. In particular, we believe that, by
using HVTA techniques, people can dramatically increase the
reliability of software that must run for long periods of time
without stopping or rebooting.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

WERST 04, July 11, 2004, Boston, MA, USA.

Copyright 2004 ACM 1-58113-000-0/00/0004...$5.00.

Cem Kaner
Florda Institute of Technology

Computer Sciences Department
150 W. University Bivd.
Melbourne, FL 32901

321-674-7137

kaner@kaner.com

While HVTA techniques are better at finding these types of
errors, they are usually not better at finding several other types
of errors. Requirements errors are often better found by other
techniques such as formal methods, user testing, or
exploratory testing. Simpler functional errors are often better
found by domain testing, boundary value analysis, etc. HVTA
techniques can find these errors, but the other techniques are
usually less expensive to apply.

In particular, HVTA techniques are much more effective on
code that is already fairly stable and passes basic functional
tests. For such code, we believe it can lead to substantial
increases in reliability.

High volume automated testing has been used to qualify
safety-critical software, such as air traffic control systems,
medical heart monitors, and telephone systems. It has also
been used to qualify firmware in consumer and office
automation products, such as printers and networking
equipment, and to expose faults in software such as word
processors and operating systems.

There is very little empirical research on HVTA techniques.
Much of the development that has been done has been
proprietary industrial development. We propose to do a
reverse technology transfer, from isolated pockets in industry
to the academy and the public.

2. RESEARCH ACTIVITIES

We plan to perform our research in several stages. We have
started on the first two of these.

2.1 Capture an industry experience

The first stage is to perform an informal descriptive case study
[7] of a specific HVTA technique in an industrial setting. We
will capture enough information to understand the technique,
how it was used, the overall pattern of results, the technique
users’ beliefs about the types of errors it is effective at
exposing, and some of its limitations. In many cases, we will
work behind a non-disclosure agreement that allows us to
describe the technique, the internal tools that implement the
technique, and to hint at results. We would likely not be able
to detail specific results or sometimes even disclose the name
of the company or product. These will contain a level of detail
usually found in experience reports rather than formal case
studies.

We have completed one of these reports. [4] So far, we have not
found a forum in which to publish this work. Reviewers
correctly point out that non-disclosure agreements prohibit
including many of the details that would make this work of
interest to academic audiences.

2.2 Create a tool

We will use these less formal reports to inspire further
development and more formal case studies. We plan to develop
our own tools to implement the technique. We plan to release
these tools as open source products. We have started on one
such tool to implement Extended Random Regression testing

(4]

Given that the tool will be freely available, we expect that
other people will apply the tool to their own specific projects.
We hope that this will encourage some of them to perform their
own case studies or to allow us or other academic researchers
to use them as subjects of formal case studies.

2.3 Apply the tool in a descriptive case study
We then plan to use that tool to perform a more formal case
study. In this case study, we will apply the tool to one or more
other open source projects. In this case study, we will serve
both as the Experimenter and as the Subject.

It can be hard to find good subject programs to test. We
propose to use large programs developed by the open source
community. These programs are freely available and have
publicly available bug tracking systems. Examples of
programs we plan to test are Mozilla and Open Office.

We will use these projects developed by other people, but we
will apply the tool ourselves, rather than collect data as other
subjects apply the tool to their own projects. Because we will
operate on open source products, the source code, the tests,
and the bug database will all be publicly available, allowing
others to much more easily validate our data.

While creating our tools and running them against these
programs, we will collect time and effort data, both while
creating the tool and while using it to test the product. That
data, combined with the bugs submitted to the developers and
their evaluations and responses to the bugs, should allow us
to derive efficiency measures.

3. EXPECTED OUTCOMES

3.1 Outcome variables

We expect to primarily measure effort in applying the test
technique, number, type, and severity of errors found, and
improvements in reliability of the end product as a result of
applying the technique. We plan to report bugs that we
discover back to the developers, and to include their feedback
and responses to these bugs in our evaluation of the test
technique and the tool.

Each development team that might use HVTA techniques will
of course have their own specific outcome variables that they
treat as important. User satisfaction is important to product
development teams. For some, an interesting variable will be
efficiency in the test process. For others, it may be the MTBF
of the product. For others, it might be reduction in technical
support costs. For still others, it might be the reduction in
risk and in contingent liabilities due to possibility of
lawsuits.

While we recognize that these are important, we also recognize
that they are very dependent on the specific context of the
user. We will not be able to predict or measure most of these.
So, we will primarily concentrate on those outcome variables
that are common to many contexts, even though they may be
less important than others to specific potential users.

3.2 Threats to external validity
We hope to achieve results that generalize well by performing
tests on real programs currently under development.

One threat to external validity of these case studies is that the
products we will test will all be open source development
efforts. These projects tend to be somewhat different from most
proprietary development efforts. They tend to have a larger
number of developers. The developers are often not driven by
the goal of being profitable, and so make different engineering
tradeoffs. There may or may not be a bias causes by different
individual viewpoints or skills. The projects tend to use
methodologies with shorter development cycles.

Therefore, the results will be less generalizable to some other
types of development, specifically projects developed with
waterfall model and long development cycles, and with the
goal of being economically profitable in both the short and
long terms.

Another possible threat might be the dependency on specific
type of product. We plan to address this threat by testing
several different types of products, including operating
systems, desktop applications, back-end applications, and
embedded software.

We will be performing both as the Experimenter and as the
Subject, while and after writing the tool. This will tend to make
the case study less generalizable. We will of course become
expert in the tool, since the same team will be writing the tool
and using it to test another product. We hope to address this
threat by recruiting external testers that will allow us to study
their use of the tool.

4. PROBLEMS POTENTIALLY FOUND

Here are some of the types of problems and some HVTA
techniques that can be used to expose them.

4.1 Buffer overruns and security holes

Start with a properly formatted data file of a type commonly
available on the web, such as Word, PDF, Flash, or Real Audio.
Use HVTA (in this case, “hostile data stream testing” [2]) to
corrupt the file, trying thousands or millions of variations of
the original file. The goal is to create a file that will (a) look
acceptable to the program that reads it, and (b) overflow some
internal buffer. Then, (c) exploit this failure to execute a
follow-up program on the target computer

4.2 Special cases

Some failures occur only on the occurrence of a narrow
condition. Some narrow conditions (e.g., divide by zero) are
obvious and tested routinely. Others are much more subtle.
The Intel FDIV bug occurred on only a very small percentage
of possible input cases. [5]. Edelman [1] shows that if you
understand the mathematics of this particular bug, there are
some efficient ways to expose it. However, in the face of
arbitrarily many different types of bugs, there’s something to
be said for a brute force attack that simply tries a massive
number of calculations, comparing the results against those
from a known good set of reference functions.

4.3 Timing related errors
Race conditions are common in telephone systems under
development and several were exposed in the simulator-based

high-volume testing done by Telenova, a PBX manufacturer,
described in [3]. They have also been implicated in the 2003
northeast US power blackout. [6]. Using Extended Random
Regression testing exposed a significant number of these in
“Mentsville” [4]. Running very large numbers of test cases
without restarting or resetting the program can be useful in
finding this type of problem.

4.4 Corrupt memory or stack

An event puts bad data into some memory location. At some
later, possibly much later time, another function attempts to
read and act on the bad data. Wild pointers are a classic
example of this problem. For some well-known platforms,
there are useful tools to expose these problems, but they are
not available for all platforms (including the largely custom
ones) used to develop embedded software. Running the
program for a long time with large numbers of test cases can
help find this type of problem.

4.5 Memory or resource leaks

Some memory leaks are extremely difficult to pin down. For
example, consider a system that recovers unused memory via
garbage collection. The amount of apparently-free memory
decreases with normal operation of the program and is restored
to maximum by garbage collection. This maximum varies
depending on what functions are active and how they are using
memory at a given time. A decline in free memory from one
garbage collection to the next might reflect entirely normal
error-free operation. A memory leak might not be apparent
until a declining trend is seen after many garbage collections,
and by then, it might be difficult to determine which function
has the problem.

4.6 Resource exhaustion

Some sequences of operations might exhaust some resource,
such as stack frames or file descriptions, while many other
sequences through the same code might not. If traditional tests
do not test any of the few sequences that do consume more
resources than are available, they will not expose those
defects. Running weaker tests on more of the possible
sequences can raise the probability of exposing these defects.

5. Current status

We have performed one case study on a test technique used in
a few places in industry, Extended Random Regression
testing[4]. We have found no academic references to it. In this
case study, we were able to gather significant history on the
use of the technique. We were able to obtain permission to
publish some of the details about the testing technique, the

test tool, and some of the results. We were not able to obtain
permission to publish details that would identify the company
or the product. There are many questions that a case study
should answer that we were not able to provide answers to.

The problems with not being able to publish full details of
this experience led us to propose our current research plan.
This plan will require somewhat more work, but will result in
case studies for which we can publish all the details.

We are currently working on our own tool inspired by
Mentsville’s tool. We plan to make it publicly available, along
with details of the experiment we will perform using the tool.

In addition, for the hostile data stream testing technique, we
have written a draft-quality version of a tool and done
preliminary experiments using it.[2]

6. ACKNOWLEDGMENTS

This work has been partially supported by grants from NSF
(EIA-0113539 ITR/SY+PE: “Improving the Education of
Software Testers.”), and Rational Software / IBM, We greatly
appreciate this support.

We wish to thank our first case study subject, who wishes to
remain anonymous. We refer to them as Mentsville.

7. REFERENCES
[1] Edelman, A. The mathematics of the Pentium division
bug. SIAM Reviews, 39 (1). 54-67.

[2] Jorgensen, A.A. Testing with Hostile Data Streams. ACM
Software Engineering Notes, 28 (2).

[3] Kaner, C. The impossibility of complete testing Software
QA, 1997, 28.

[4] McGee, P. and Kaner, C., Extended Random Regression
Testing: Running long sequences of already-passed tests.
in submitted to International Symposium on Software
Testing and Analysis, (2004).

[5] Nicely, T.R. Letter to Intel: Bug in the Pentium FPU, 1994.

[6] U.S.-Canada Power System Outage Task Force. Final
Report on the August 14th Blackout in the United States
and Canada, 2004.

[7] Yin, R.K. Case Study Research: Design and Methods,
1994.

