
Measurement & AnalysisMeasurement & Analysis

March/Apr i l 2000 Sof tware Tes t ing & Qua l i t y Eng inee r ing www.s tqemagaz ine .com
51

Rethinking
Software
Metrics

Rethinking
Software
Metrics

Evaluating measurement schemes

by Cem Kaner, J.D., Ph.D.

Cem Kaner onCem Kaner on

Perhaps the most respected book on measurement in computing,
Fenton and Pfleeger’s Software Metrics: A Rigorous and Prac-
tical Approach, defines measurement as follows:

“Measurement is the process by which numbers or symbols are as-
signed to attributes of entities in the real world in such a way as to describe
them according to clearly defined rules.”

The problem with this definition is that there are lots of available clear-cut rules. We
have to select the right clearly defined rule. Otherwise we could measure “goodness of
testers” by the clearly defined rule called “counting their bug reports.” This (as we’ll see in a
few moments) is ridiculous.

I prefer the following definition:

Measurement is the assignment of numbers to attributes of objects
or events according to a rule derived from a model or theory.
Fenton and Pfleeger do point out the issue of the need for a model. They discuss this as

an issue of the definition of the attribute. All that I’m doing here is making the issue much
more visible.

The invisibility of underlying measurement models has led people to use inadequate and
inappropriate “metrics,” deluding themselves and wreaking havoc on their staffs. For a good
read on this as a general problem, read R.D. Austin’s 1996 book, Measuring and Managing
Performance in Organizations—or, for that matter, Scott Adams’ comic strip Dilbert.

QUICK LOOK

■ Nine factors to assess
a measurement scheme

■ An examination
of three common measures

http://www.stqemagazine.com/

Building a Theory
of Measurement
Measurement theory addresses prob-
lems that run through many disci-
plines, including Computing. I learned
about the theory of measurement pri-
marily from Steve Link and A.B.
Kristofferson, when I did my doctoral
studies in psychophysics (also known
as perceptual measurement). (For a
thoughtful history of that field, read
Link’s 1992 book, The Wave Theory
of Difference and Similarity.)

This article is a preliminary re-
port of my attempts to pull together
thinking from several disciplines into
a more coherent, and I think more
practical, approach to software-relat-
ed measurement. My goal is to help
you evaluate measurement schemes
that people ask you to use, to help
you explain why the bad ones should-
n’t be imposed on your group, and to
help you develop more useful alterna-
tives.

In summary, I think that the theo-
ry underlying a measurement must
take into account at least nine factors.
This article defines these nine factors
and applies them to a few examples.

The first five are intuitive:

1. The attribute to be measured. This is
what you want to measure, such as the ex-
tent of testing that you’ve done, the com-
plexity of the program you’re testing, or the
effectiveness of a tester.

2. The instrument that measures the at-
tribute. Think of a measure as a reading
from an instrument. For example, a stop-
watch shows how much time has passed.
Some people try to measure extent of test-
ing with a coverage program, software
complexity with a complexity program, or
tester effectiveness with bug counts.

3. The relationship between the at-
tribute and the instrument. What is
your basis for saying that this instrument
measures this attribute well? Here’s a
question that I find useful: Suppose that
we increase the attribute by 20%. What do
we expect to happen to the instrument,
and why? How confident are we that the
instrument reading (the measured value)
will go up? What mechanism relates the
attribute to the instrument?

4. The probable side effects of using
this instrument to measure this at-
tribute. When people realize that you are
measuring something, how will they
change their behavior to make the num-
bers look better? If you find a way to
change the measurement by 20%, what
has happened to the attribute? Some side
effects are so bad that the result of trying
to make the number bigger is to drive the
attribute lower (for example, as discussed
further below, driving people to increase
bug count might increase the number of
bugs reported—but make the testers
much less effective).

5. The scope of the measurement, proba-
bly defined in terms of what this measure-
ment will be used for.

The next four factors are more
technical but are essential for an un-
derstanding of the attribute, the in-
strument, and their relationship:

6. The appropriate scale for the at-
tribute. We’ll discuss scale types in a mo-
ment.

7. The variation of the attribute. The at-
tribute itself is probably subject to random
fluctuations. You might be a more effective
tester on Tuesday than on Wednesday.
Therefore we need a theory of variation of
the attribute.

8. The scale of the instrument. To be dis-
cussed shortly.

9. The variation of measurements made
with this instrument. The act of taking

measurements, using the instrument, car-
ries random fluctuations. Thus, we need a
theory of measurement error, or of varia-
tion associated with using and reading the
instrument.

Example: Using a Ruler
Let’s start with an example of the sim-
plest case, measuring the length of a
table with a one-foot ruler.

■ Attribute The attribute of interest is the
length of the table.

■ Instrument The ruler is the measuring in-
strument. It’s one foot long, so we’ll have to
lay it down six times to mark off a six-foot
length.

■ Theory of Relationship The relationship
between the attribute and the instrument is
direct. They’re both on the same scale and
(except for random error) a change in the at-
tribute results in a directly comparable
change in the measured value. (Example:
Cut the table down to four feet and the next
time you measure it, the ruler measurement
will read four feet.)

■ Probable Side Effects I don’t anticipate
any side effects of using a ruler to measure
the length of the table.

■ Attribute’s Scale We’ll have more to say
about scaling soon. For now, note that the
length of the table can be measured on a ra-
tio scale. A table that is six feet long is twice
as long as one that is three feet long. If we
doubled the lengths, the twelve-foot table
would still be twice as long as the six-foot
table. This preservation of the ratio relation-
ship (“twice as long”) when both items are
multiplied is at the essence of the ratio
scale.

■ Attribute’s Variation If you measure the
lengths of a few tables, you’ll get a few
slightly different measurements because
there is some (not much, but a little) manu-
facturing variability in the lengths of the ta-
bles. Tables that are supposed to be six feet
long might actually vary between 5.98 and
6.02 feet. The length of individual tables
might not vary much, but if you went to an
office supply store and asked for a six-foot
table, the table that you would get would
only approximate (perhaps very closely ap-
proximate) six feet.

■ Instrument’s Scale The instrument (ruler)
measures length on a ratio scale.

www.s tqemagaz ine .com Sof tware Tes t ing & Qua l i t y Eng inee r ing March/Apr i l 2000
52

When people realize that

you are measuring something,

how will they change their

behavior to make the numbers

look better? If you find a way

to change the measurement

by 20%, what has happened

to the attribute?

http://www.stqemagazine.com/

■ Instrument’s Variation Try to measure a
six-foot table with a one-foot ruler ten times.
Record your result as precisely as you can.
You’ll probably get ten slightly different mea-
surements, probably none of them exactly
6.00 feet. Even with ruler-based measure-
ment, we have error and variability.

Example: The Scaling Problem
Suppose that Sandy, Joe, and Susan
run in a race. Sandy comes in first,
Joe comes in second, and Susan third.
The race comes with prize money.
Sandy gets $10,000, Joe gets $1000,
and Susan gets $100.

■ Attribute Let’s say that our attribute of in-
terest is the speed of the runners.

■ Instrument The instrument is the simple
observation of the order of the runners as
they cross the finish line. There are two dif-
ferent sets of markers on this instrument
(like the inch and centimeter markers on
rulers). One set of markers says First, Sec-
ond, and Third. The other markers are prize
money amounts, say $10,000, $1000, and
$100. You might prefer to measure speed
with some other instrument, but (oops) you
forgot your stopwatch and this is what
you’ve got. (If this example looks oversim-
plified, please be patient with it; I’m trying
to use something everyone understands in
order to illustrate the problem that some-
times we are stuck with crude measuring
instruments.)

■ Theory of Relationship The mechanism
underlying the relationship between speed
and position in the race is straightforward.
Faster speed results in a better position
(First, Second, Third).

■ Probable Side Effects I don’t see obvious
side effects (changing how people run
races) in this particular case.

■ Attribute’s Scale The attribute’s scale is
probably best expressed in terms of miles
(or meters) per hour. If so, this is a ratio
scale (one mile per four minutes equals fif-
teen miles per hour).

■ Attribute’s Variation The race only gave
us one sample of the speed of these run-
ners. If they ran the same track and distance
again tomorrow, they’d probably have differ-
ent times.

■ Instrument’s Scale This instrument op-
erates on an ordinal scale—not a ratio

scale, and not an interval scale. (For de-
tailed discussions of scale types, see S.S.
Stevens’ 1976 book Psychophysics, and
Fenton and Pfleeger’s Software Metrics.)
The following comparisons should give you
a sense of the differences among the
scales.

If we were operating on a ratio scale, we
would be able to say that Susan (measured
as $100) was 1/100th as fast as Sandy
(measured as $10,000).

If we were operating on an interval scale,
we could say that the difference between
Susan and Joe (3−2=1) was the same as
the difference between Joe and Sandy
(2–1=1) and that the difference between
Susan and Sandy (3–1=2) was twice the
difference between Susan and Joe.

On an ordinal (or positional) scale, all we
know is that Sandy crossed the line first, Joe
crossed it second, and Susan crossed it
third. We don’t know how much faster Joe
was than Susan, but we do know that he
was not as fast as Sandy.

The ordinal scale doesn’t tell us much about
speed but it tells us more than a nominal
(or categorical) scale. It would stretch the
example too far to try to talk about a nominal
scale for speed. But since we’ve been com-
paring the different scale types here, let’s
say a few words about nominal scales as
well. Suppose that you had hundreds of dif-
ferent bug reports, and you sorted them into
categories (this is a printing error, that is a
usability error, etc.). We can assign numbers

to the categories (printing = type 1; usability
= type 2), but even though we might assign
these numbers to the reports according to
well-considered rules, the numbers are just
labels.

The final scale to mention is the absolute
scale. If you have one (1) pen, you have one
(1) pen. If you cut it in half, you get a mess;
not two halves of a working pen.

■ Instrument’s Variation There is probably
not much measurement error in this exam-
ple, unless the race was very close.

Measurement
in the Real World
The examples of length and position
in the race are toys. They are easy to
figure out. The theories of relation-
ship are clear-cut and the side effects
are minimal.

When it comes to things that we
would really like to measure, life is
more difficult. Examples of the kinds
of things that testers are routinely
asked about include:

■ Productivity Who’s doing a better job of
testing or programming (or whatever)?

■ Extent How much testing has been done?

■ Progress Where are we relative to some
plan?

■ Reliability What is the actual and probable
future rate of failure?

■ Usability What, for example, is the probable
user error rate?

■ Support Burden What will this cost to
support?

How do we measure these? Each
one involves complex issues. Typical-
ly, they involve a lot of judgment
(which is subjective). Additionally,
several of the most interesting dimen-
sions involve human behavior. That’s
hardly a surprise—we are working in
a field of human endeavor, called
computing, whose essential work
product is the stuff of mental cre-
ation. The essence of “quality” is
“qualitative.” As Gerald Weinberg
wrote in the 1993 book Quality Soft-
ware Management, “Quality is value
to some person.”

March/Apr i l 2000 Sof tware Tes t ing & Qua l i t y Eng inee r ing www.s tqemagaz ine .com
53

The attribute itself

is probably subject to random

fluctuations.

You might be a more effective

tester on Tuesday than

on Wednesday.

Therefore we need a theory

of variation of the attribute.

http://www.stqemagazine.com/

There is a bias in computing
against measurements that involve
subjective quantities. Somehow, some
people have developed the idea that
subjective issues are immeasurable
and unscientific. (This article isn’t the
place to refute that directly; but if
you’re of that view, go read Link’s
wave theory book.)

Tom DeMarco provided an ex-
ample of this bias almost twenty
years ago. Although he has taken a
different approach in his more recent
book, Why Does Software Cost So
Much?, his original presentation in
1982’s Controlling Software Pro-
jects is a well-written, still influential
example. DeMarco asked how to
measure customer interface com-
plexity, and provided an example of
how not to do it—the development
team were asked to rate the cus-
tomer interface complexity of their
own projects as normal, greater than
normal, or less than normal. He
pointed out some biases associated
with using developers to rate their
own code, and then concluded that
“any exercise that tries to give a nu-
meric value to an unquantum without
doing any real measurement along
the way is a bit of a fraud.” An “un-
quantum” is, according to DeMarco,
“a relevant factor that is unmea-
sured.” Evidently, rankings by hu-
mans don’t count as measurements.
Instead, he said that measures like
the following were “true metrics.”

■ Change Rate: customer-introduced
changes per unit time

■ Change Impact: unit cost of average
change

■ Customer Dissatisfaction: cost of change
during a fixed period

I accept DeMarco’s opinion that
the developers’ rankings of their own
work are unusably biased, but to say
on the basis of this that human rank-
ing of complexity is some kind of un-
quantum because it isn’t expressed in
easy-to-count numbers that are much
less directly related to the value we
want to measure (that is, the com-
plexity of the thing to humans)
seems…well, I guess we just disagree
[on that 1982 conclusion]. I think it
would be interesting to ask customers

who interacted with the system to rate
the different areas’ customer interface
complexity. The fact that there are
lots of ways to do this badly doesn’t
create an excuse for walking away
from a fundamental point: that if you
want to talk about the complexity of a
human-machine interface, the hu-
man’s sense of that complexity is a
key measure—perhaps the most di-
rect and the important measure—of
that complexity.

Software-related attributes often
involve psychological or subjective
components. Our measurements of
them are questionable when they fail
to take these factors into account.

Let’s consider three common at-
tempts to develop software metrics:

Example: Bug Counts and
the Theory of Relationship
Should we measure the quality (pro-
ductivity, efficiency, skill, etc.) of
testers by counting how many bugs
they find? Leading books on software
measurement suggest that we com-
pute “average reported defects/work-
ing day” and “tester efficiency” as
“number of faults found per KLOC”
or “defects found per hour.” [See
complete references at the end of
this article, specifically Grady et al.
1987, Fenton et al. 1997, and Fenton
et al. 1994.] These authors are refer-
ring to averages, not measures of in-
dividual performance, and they
sometimes warn against individual
results (because they might be un-
fair). However, I repeatedly run into
managers (or, at least, the test man-
agers who work for them) who com-
pute these numbers and take them
into account for decisions about rais-
es, promotions, and layoffs. For that
matter, are these even valid measures
of the efficiency of the group as a
whole?

Let’s do the analysis and see the prob-
lems with this measure:

■ Attribute The attribute of interest is the
goodness (skill, quality, effectiveness, effi-
ciency, productivity) of the tester.

■ Attribute’s Scale I don’t know. Neither do
you.

■ Attribute’s Variation I don’t know. But
there is variation. Joe probably does better

work on some days than others.

■ Instrument We don’t have an obvious,
easy-to-use, unambiguous direct measure
of tester effectiveness, skill, etc. So instead
we use a surrogate measure, something
that is easy to count and that seems self-ev-
idently related to the attribute of interest. In
this case, the instrument is a counter of bug
reports.

■ Instrument’s Scale Bug counts are an
absolute scale (two half-reports do not equal
one whole-report).

■ Instrument’s Variation There’s not much
random variation in the counting of bug re-
ports (although there is some, such as bugs
classified as duplicates). There is systematic
measurement-related variation, as we’ll see
in the discussion of side effects.

■ Theory of Relationship There is hardly
any theory of relationship between the at-
tribute and the instrument here. We count
bugs because they are easy to count, not
because this is an essential measure of the
worth of the tester. Yes, testers should
search for bugs. But when you increase a
tester’s true effectiveness by 20%, you
might get someone who goes after harder-
to-find bugs, takes on code that is more sta-
ble and has problems that are much more
subtle, or who writes better test documenta-
tion, mentors the rest of the staff, spends
more time building tools, or who does other
great stuff that never reflects directly on her
personal bug count. Bug counts would seri-
ously mismeasure such testers.

■ Probable Side Effects People are good at
tailoring their behavior to whatever they’re
being measured against. If you ask a tester
for more bugs, as Weinberg and Schulman
have pointed out, you’ll probably get more
bugs. Probably you’ll get more bugs that are
minor, or similar to already reported bugs, or
design quibbles—more chaff. But the bug
count will go up. In general, this measure-
ment system creates incentives for activities
that generate certain results (lots of bugs)
and disincentives for anything else. The pre-
dictable result is dysfunctional—people
changing their behavior in ways that bring
up their bug counts, at the expense of un-
measured variables that might have much
more to do with the genuine effectiveness of
a tester in a group. (Austin talks about side
effects—or, as he calls it, “dysfunction”—in
detail in his 1996 book.)

www.s tqemagaz ine .com Sof tware Tes t ing & Qua l i t y Eng inee r ing March/Apr i l 2000
54

http://www.stqemagazine.com/

Problems like these have caused
several measurement advocates
(specifically Grady and Caswell, and
Austin) to warn against measurement
of attributes of individuals unless, as
DeMarco suggested in 1995, the mea-
surement is being done for the benefit
of the individual (for genuine coach-
ing or for discovery of trends) and
otherwise kept private.

With only a weak theory of rela-
tionship between bug counts and
tester goodness, and serious probable
side effects, we should not use this
measure (instrument).

Example: Code Coverage
Suppose that you want to know how
much testing has been done. How
would you measure that?

One approach is to compute
“code coverage.” The most common
definition of coverage involves the
percentage of statements tested, or
the percentage of statements plus
branches tested. Supposedly, a high-
er percentage means more testing.
Some people (vendors included) go
further and foolishly say that 100%
coverage means complete, or suffi-
cient, testing.

There are several other types of
coverage beyond statement and
branch coverage (some examples are
described in my 1995 article, listed in
the complete references at the end of
this feature). Each of these involves
measuring the percentage of a certain
type of test that you have run, or a
certain level of thoroughness of
checking for a specific type of error.
We are never using the population of
all possible tests of a product as our
baseline when we compute code cov-
erage—if we were, coverage would al-
ways be 0.00%, a rather boring num-
ber. But because we are not
accounting for all possible tests, we
can have a 100% covered product that
still has undiscovered defects.

■ Attribute Extent of testing completed.

■ Instrument Number of tests run of a cer-
tain type, number of lines touched by the
tests, etc. Depends on the definition of cov-
erage.

■ Theory of Relationship We could repre-
sent the possible bugs in a product in terms
of a disjoint collection of sets: E1, E2, E3,

and so on through EN. I don’t know how big
N is. E1 is the set of all errors of type 1 (such
as failure to initialize a variable). E2 is the
set of all errors of type 2 (such as a syntax
error in a line of code). A coverage measure
tells you that you have made great progress
against certain types of errors—perhaps at
100% coverage, you have tested for all pos-
sible errors of types E2, E3, and E4. As a
normal part of the process, you will stumble
over some other types of errors, so cover-
age-driven testing is broader than just the
collection of errors that the tool is focused
on. But still, suppose that we increase the
extent of testing by running a bunch of tests
that this particular coverage tool is insensi-
tive to. For example, you can run through
every line of code (statement coverage)
without ever testing a boundary value. Go
back to test all boundary values and you
might find new bugs, but you won’t increase
statement coverage at all.

■ Probable Side Effects Brian Marick has
repeatedly pointed out the side effects of
driving testing by using coverage metrics.
People focus their efforts on the types of
tests that will drive up the percentages, and
they tend to stop when they have reached
the target percentage (85% “coverage”
might be good enough in some companies,
95% the target in others.) The result is that
they stop testing when they have found most
of some types of errors, without necessarily
realizing that they have no assurance that
they have found most of several other types
of errors.

■ Scope Do these side effect problems mean

that we should not use coverage tools? No,
of course not. It depends on what we use
coverage for. I think it is very useful to evalu-
ate coverage in order to discover that some
code is completely untested, but that it is
also quite dangerous to use a coverage
“metric” as an indicator of how close to
completion you are.

In sum, our measures of the ex-
tent of testing—like so many mea-
sures that we take in software—are
numeric. This might make them look
more “scientific,” but they are funda-
mentally judgment-driven. A theory of
testing and of testing adequacy is em-
bedded (often hidden) in such mea-
sures.

Example: Code Complexity
McCabe’s complexity metric is often
enough criticized as incomplete (see,
for example, Fenton and Pfleeger in
Software Metrics). But let’s apply
our model to this metric.

■ Attribute Let me suggest that “complexity”
is a fundamentally psychological concept. If
the term means anything, it deals with how
complex the software is to a human. Indeed,
the complexity metrics are sometimes ex-
plicitly referred to as measuring “psycholog-
ical complexity.”

■ Instrument A count of the number of num-
ber of nodes on the graph, essentially of the
branches in the program, certainly looks at
one aspect of complexity. It is easy to
count…but does this counting give us a true
measure of complexity?

■ Theory of Relationship We can easily
drive up true complexity (for example,
replacing all the variable names with
random numbers) without affecting the
branch-driven complexity measure at all.
The relationship is weak and without much,
if any, theoretical basis.

■ Probable Side Effects Distortions may oc-
cur in the code as we pay tremendous at-
tention to a counter of paths—and less at-
tention to the unmeasured complexity issues
like clarity of expression, variable naming
conventions, algorithmic sanity, and operat-
ing environment.

In Sum
In his 1993 book, Making Software
Measurement Work: Building an

March/Apr i l 2000 Sof tware Tes t ing & Qua l i t y Eng inee r ing www.s tqemagaz ine .com
55

There is hardly

any theory of relationship

between the attribute

and the instrument…

We count bugs because

they are easy to count,

not because this is an

essential measure

of the worth of the tester.

http://www.stqemagazine.com/

Effective Measurement Model, Bill
Hetzel pointed out that

“Practitioner attitudes [toward measure-
ment] tend to range from barely neutral
to outright antagonistic. It is rare to find
the practitioner who really thinks of mea-
surement as a useful and indispensable
tool for good software work. Most feel
that they get back very little from the
measurement activity. . . The psychologi-
cal dislike and distrust our practitioners
have about measurement is a significant
challenge facing us. From my perspec-
tive, we’ve been pretty unsuccessful in
serving working engineers and practi-
tioners.”

Hetzel suggests an alternative,
bottom-up approach to measurement
that is worth looking into. He wants to
use metrics to stimulate questions, to
explore the engineering activity,
rather than to use them to immediate-
ly focus on setting targets and goals
to control engineering.

The approach that I’m suggesting
isn’t incompatible with Hetzel’s. Or
with Fenton and Pfleeger’s, or many
other common approaches to soft-
ware metrics. But what I’m proposing
here is more explicit about some is-
sues that we too often approach too
casually.

Measures are not made accept-
able simply because they are easy to
compute and seem relevant. They
are not valuable merely because
they have something to do with the
latest goal-of-the-week. They work
when they actually relate to some-
thing we care about, and when the
risks associated with taking the
measures (the probable side ef-
fects), in the context of the scope of
use of those measures, are insignifi-
cant compared to the value of infor-
mation we actually obtain from
them. To understand that value, we
must understand the underlying re-
lationship between the measure and
the attribute measured.

This material was first pub-
licly presented at the Pacific
Northwest Quality Conference in
October, 1999. This model was re-
viewed and extended at the
Eighth Los Altos Workshop on Soft-
ware Testing in December, 1999. I
thank the LAWST attendees, Chris
Agruss, James Bach, Jaya Carl,

Rocky Grober, Payson Hall, Elisa-
beth Hendrickson, Doug Hoffman,
Bob Johnson, Mark Johnson, Brian
Lawrence, Brian Marick, Hung
Quoc Nguyen, Bret Pettichord,
Melora Svoboda, and Scott Ver-
non, for their critical analyses.
STQE

Cem Kaner, Ph.D., J.D., is the se-
nior author of Testing Computer
Software and of Bad Software:

What to Do When Software Fails.
He consults and teaches courses
on software testing and practices
law, focusing on the law of soft-
ware quality. Contact him at
k a n e r @ k a n e r . c o m ,
www.kaner.com, or www.badsoft-
ware.com.

www.s tqemagaz ine .com Sof tware Tes t ing & Qua l i t y Eng inee r ing March/Apr i l 2000
56

Editors Note: Because this article introduces a new theory into the body of industry
literature, we have included its complete list of references.

References
Austin, R.D. Measuring and Managing Performance in Organizations.
Dorset House, 1996.

DeMarco, T. Controlling Software Projects: Management, Measurement,
and Estimation. Dorset House, 1982 (p. 51).

DeMarco, T. “Mad about measurement” in Why Does Software Cost So Much?
Dorset House, 1995.

Fenton, N.E., Pfleeger, S.L., and Glass, R.L. “Science and Substance:
A Challenge to Software Engineers,” IEEE Software (July 1994).

Fenton, N.E. and Pfleeger, S.L. Software Metrics: A Rigorous and Practical
Approach, 2nd ed. PWS Publishing, 1997 (pp. 5, 36, 39).

Grady, R.B. and Caswell, D.L. Software Metrics: Establishing a Company-Wide
Program. PTR Prentice-Hall, 1987 (p. 227).

Hetzel, B. Making Software Measurement Work: Building an Effective
Measurement Model. QED Publishing Group, 1993 (p. 20).

Johnson, M.A. “Effective and Appropriate Use of Controlled Experimentation
in Software Development Research” (master’s thesis in computer science, Port-
land State University, 1996).

Kaner, C. “Software Negligence and Testing Coverage,” Software QA Quarterly 2,
no. 2 (1995): 18 [available at www.kaner.com/coverage.htm].

Link, S.W. The Wave Theory of Difference and Similarity. Lawrence Erlbaum, 1992.

Marick, B. “How to Misuse Code Coverage” (conference paper, 1999) [available
at ftp://ftp.rstcorp.com/pub/papers/coverage.pdf].

Stevens, S.S. Psychophysics. Wiley, 1975.

Weinberg, G.M. Quality Software Management, Volume 2, First-Order
Measurement. Dorset House, 1993 (p. 108).

Weinberg, G.M. and Schulman, E.L. “Goals and performance in computer
programming,” Human Factors 16, no. 1 (1974) (pp. 70-77).

http://www.stqemagazine.com/
Alison Kincaid
STQE magazine is produced by STQE Publishing, a division of Software Quality Engineering

http://www.stqemagazine.com/
http://www.sqe.com/
Alison Kincaid
 This article is provided courtesy of STQE magazine. STQE magazine is produced by STQE Publishing, a division of Software Quality Engineering.

