The Ongoing Revolution in Software Testing

Cem Kaner Software
Testing &
Performance
Conference

Florida
Institute of Baltimore
Technology 12/8/2004

CENTER FOR SOFTWARE TESTING
EDUCATION AND RESEARCH

Ongoing Revolution in SW Testing Copyright © 2004, Cem Kaner 1

About Cem Kaner

My current job titles are Professor of Software Engineering at the Florida Institute of
Technology, and Research Fellow at Satisfice, Inc. I’m also an attorney, whose work focuses on

same theme as the rest of my career: satisfaction and safety of software customers and workers.
W

I’ve worked as a programmer, tester, writer, teacher, user
interface designer, software salesperson, organization
development consultant, as a manager of user documentation,
software testing, and software development, and as an attorney
focusing on the law of software quality. These have provided
many insights into relationships between computers, software,
developers, and customers.

I’m the senior author of three books:

— Lessons Learned in Software Testing (with James & Bret
Pettichord)

— Bad Software (with David Pels)

— Testing Computer Software (with Jack Falk & Hung Quoc
Nguyen).
I studied Experimental Psychology for my Ph.D., with a
dissertation on Psychophysics (essentially perceptual
measurement). This field nurtured my interest in human factors
(and thus the usability of computer systems) and in measurement
theory (and thus, the development of valid software metrics.)

Ongoing Revolution in SW Testing Copyright © 2004, Cem Kaner 2

The Ongoing Revolution in Software Testing

Some Messages of this Talk

 Testing involves an active, skilled, technical investigation.
Competent testers are investigators--clever, sometimes
mischievous researchers. | think that models of testing that
don’t portray testing this way are obsolete for most contexts.

* In much of the past 30 years, many leaders in the testing
community have urged us to dumb our work down, make it
more routine and then cost-reduce it. This often leads to serious
inefficiency and weak testing. As a particular example, much
regression testing should be moved to the unit test level or
reconsidered. Automation is useful, but only if useful things are
automated in efficiency-supporting ways.

 Suppose we thought of ourselves as who we are at our best:

— active learners who find ways to dig up information about a
product or process just as that information is needed.

— How would our attitudes about testing (and testers) change
if we adopted this as our vision?

Ongoing Rev olution in SW Testing Copyright © 2004, Cem Kaner 3

Old Views

- Many years ago, the software development community
formed a model for the software testing effort. As |
interacted with it from 1980 onward, the model
included several "best practices” and other shared
beliefs about the nature of testing.

~
The testing community

developed a culture

around these shared beliefs.
N e

Ongoing Rev olution in SW Testing Copyright © 2004, Cem Kaner 4

Best Practices?

 Let’s be clear about what we mean when we say, “Best
Practice.”

A “best practice” is an idea that a consultant thinks he
can sell to a lot of people. There is no assurance that this
idea has ever succeeded in practice, and certainly no
implication that it has been empirically tested and found
superior (best) to competing ideas under general
conditions.

« A “best practice” is a marketing concept, a way of
positioning an idea. It is not a technical concept.

Ongoing Rev olution in SW Testing Copyright © 2004, Cem Kaner 5

Old Views

Much of the same old lore has stayed with us and is
currently promoted as the proper guide to testing culture
& practice. For example:

— Look at ISEB’s current syllabus for test practitioner
certification:

www1.bcs.org.uk/DocsRepository/00900/913/docs/practsyll.pdf

Look at the IEEE’s Software Engineering Body of
Knowledge section on software testing

www.swebok.org

These, and many other presentations, could have been
written almost as well in 1990 or even 1980.

| think it’s time to reject most of these ideas and move on.

Ongoing Rev olution in SW Testing Copyright © 2004, Cem Kaner 6

Old Views

- | started writing Testing Computer Software to foster
rebellion against some of these ideas.

— In writing the book, I intended to strip away many of the excuses that
people use to justify bad testing, excuses like these:

e Excuse: You can't do good testing without a specification.

e Excuse: You can't do good testing without reviewing the
code.

 Excuse: You can't do good testing if the programmers keep
adding functionality while you test.

 Excuse: You can't do good testing if you get along too well
with the programmers.

« Oh, Pshaw!

- Of course you can do good testing under these
circumstances.

Ongoing Revolution in SW Testing Copyright © 2004, Cem Kaner 7

Old Views

Even though TCS rejected several of the leading excuses, |
adopted much of the rest of the received wisdom:

— Such as the idea that the sole purpose of testing is to find bugs

Or wrote my critiques too gently for the average reader to realize
that | thought the process was broken:

— Such as the idea that a test isn’t meaningful unless you specify expected
results

— Such as the idea that we should create detailed, procedural test
documentation

— Such as the idea that we should develop the bulk of test materials fairly
early in the project

Or | stayed silent because | wasn’t sufficiently confident of my
conclusions:

— Such as heavy reliance on GUI regression test automation

— Such as the invalidity of most of the test-related metrics currently in use

Ongoing Rev olution in SW Testing Copyright © 2004, Cem Kaner 8

Old Views

- Over the past decade, since publishing TCS 2.0, I've become
increasingly skeptical of traditional testing:

— Too much of it doesn’t scale to the ever-larger programs we
are creating. It’s great to lovingly handcraft and thoroughly
document individual tests, but how much of this can you do
when a cell phone comes with 2 million lines of code?

— It ignores the problem that testing is such a huge task (infinite,
actually) that we have to live by our wits in figuring out the
right tradeoffs.

— In glorying a failing proceduralism over skilled craft, it pushes
bright people into other areas, creating a self-fulfilling
prophesy of low sKkill in the field.

— It fosters a toxic relationship between testers, programmers
and project managers.

- In 1999, | decided to subject my views on testing to a fundamental
reappraisal, and to drive toward training a new generation of test
architects. To do this, | went back to school. ..

Ongoing Rev olution in SW Testing Copyright © 2004, Cem Kaner 9

A Fresh Breeze

* In the 1990’s, many members of the programming
community finally decided to strike back in their own
way at the ineffectiveness (and unpleasantness) of the
test groups they worked with.

- They decided that if they couldn’t rely on testers for
good testing, they’d have to take back the
responsibility for testing, themselves.

* The results were
— Test-driven programming
— Glass-box integration test tools, such as FIT
— A variety of other open source test tool initiatives

— A renewed distinction between programmer-testing
and application-testing or customer-side testing.

Ongoing Rev olution in SW Testing Copyright © 2004, Cem Kaner 10

Purpose of Testing?

“Testing is the process of executing the code with the
intent of finding errors”

The purpose of testing is to find bugs.
— A test that finds a bug is a success
— A test that didn’t find a bug was a waste of time

It's a wonderful definition
except that
we do a lot of testing for a lot of reasons

other than finding bugs.

Ongoing Revolution in SW Testing Copyright © 2004, Cem Kaner 11

Information Objectives

Find defects that matter 4 h
Maximize bug count Different
objectives
Block premature product releases require
Help managers make ship / no-ship decisions different
Minimize technical support costs testing
o strategies and
Assess conformance to specification will yield
Conform to regulations different tests,
Minimize safety-related lawsuit risk e te§t
documentation
Find safe scenarios for use of the product and different
Assess quality test results.
Elucidate the design and prevent errors _ J

Ongoing Revolution in SW Testing Copyright © 2004, Cem Kaner 12

Let’s fix the definition

Testing is a
fechnical investigation
done fo expose
quality-related information
about the produvet
under fest

Ongoing Revolution in SW Testing Copyright © 2004, Cem Kaner

13

Defining Testing

e A technical

— We use technical means, including experimentation,
logic, mathematics, models, tools (testing-support
programs), and tools (measuring instruments, event
generators, etc.)

e investigation
— an organized and thorough search for information

— this is an active process of inquiry. We ask hard
questions (aka run hard test cases) and look carefully
at the results

e done to expose quality-related information
— see the slide on information objectives
 about the product under test

Ongoing Revolution in SW Testing Copyright © 2004, Cem Kaner 14

The Concept of Inertia

« INERTIA: The resistance to change that we build into a project.

 The less inertia that we build into a project, the more responsive we
(the development group) can be to stakeholder requests for change
(design changes and bug fixes).

— Intentional inertia:
+ Change control boards
 User interface freezes
— Process-induced inertia
« Costs of change that are imposed by the development process
— rewrite the specification
— rewrite the tests
— re-run all the tests

« Testers must realize that when they introduce heavyweight practices to
a project, they increase the project’s inertia and make it more resistant
to improvement.

Ongoing Rev olution in SW Testing Copyright © 2004, Cem Kaner 15

Inertia #1
Document Manual Tests in Full Procedural Detail?

 The claim is that manual tests should be documented in
great procedural detail so that they can be handed to less
experienced or less skilled testers, who will

(a) repeat the tests consistently, in the way they were
intended,

(b) learn about test design from executing these tests, and
(c) learn the program from testing it, using these tests.

4 N
I don't see any reason to believe that we will achieve

any of these benefits. I think this is as close as

g we come to an industry worst practice. y

Ongoing Rev olution in SW Testing Copyright © 2004, Cem Kaner 16

Inertia #2

Must we specify expected results?
* Glen Myers pushed this point very effectively

— He illustrated it with a rant about the ineffectiveness of
testing at IBM. Testers had created enormous test runs,
but didn’t know how to spot failures in their printouts.
As a result, about 35% of the failures in the field could
be traced back to failures that were actually exposed by
tests run in the lab, but never recognized as failures by
the testers.

« So, must we always specify expected results?

 Is it true, as we still hear at this conference, that test data
that aren’t tied back to expected results are meaningless?

Critical Problem

A test that is defined in terms of one expected result is
undefined against the other types of results available from
that test.

Ongoing Revolution in SW Testing Copyright © 2004, Cem Kaner 17

A program can fail in many ways

p—
i

Based on notes from Doug Hoffman

Ongoing Rev olution in SW Testing Copyright © 2004, Cem Kaner 18

Inertia #2
Must we specify expected results?

A lot of testing actually involves working with the program in a certain
way to figure out what it actually does, and to make sense of it --
whether what it does is appropriate or not.

People (many, maybe most people) don’t understand specifications
and documentation just by reading them or drawing diagrams about
them. You often learn about something by doing things with it.

The idea of exploratory testing is that you recognize that you’re going
to learn while you test, that you’re going to get more sophisticated as
you learn, that you’ll interpret your tests differently and design your
tests differently as you learn more about the product, the market, the
variety of uses of the product, the risks, the mistakes actually made by
the humans who write the code. So you build time and enthusiasm for
parallel research, test development and test execution.

As you learn what you learn, while you test, you may or may not flag an
individual result as noteworthy, worthy of reuse or re-execution.

For many tests, by the time you come to understand what result you
should expect, you’ve already gotten all the value you’re going to get
from that test.

To demand the development of test case documentation first is to bar

this type of technical learning.
Ongoing Revolution in SW Testing Copyright © 2004, Cem Kaner 19

Inertia #2

Must we specify expected results?

One of the interesting things we find in load and performance testing is
that we get functional errors--the program fails under load--from code
that seemed to work fine when we ran functional tests.

The failures often reflect long-sequence bugs, such as memory leaks,
memory corruption, stack corruption, or other failures triggered by
unexpected combinations of features or data.

To find bugs like these intentionally, we can use a variety of high
volume test automation techniques.

— See Jeffrey Feldstein’s talk at this conference
— http://lwww.testingeducation.org/a/hvta.pdf

A “problem” with these tests: we don’t really have expected results. The
results we would list as expected for each test have no relationship to
the actual risks we’re trying to mitigate.

— In my consulting experience, | found that many test managers whose
tests come in neat, well specified packages found it hard to even
imagine high volume test automation or consider the idea of
applying it to their situations.

— BUT THESE TESTS FIND PROBLEMS THAT ARE HARD TO FIND
ANY OTHER WAY

Ongoing Rev olution in SW Testing Copyright © 2004, Cem Kaner 20

Inertia #3

Design Most Tests Early in Development?

 Why would anyone want to spend most of their test design
money early in development?

— The earlier in the project, the less we know about how
it can fail, and so the less accurately we can prioritize

/One of the core problems of testing is the infinify\
of possible tests.

Good test design involves selection of a tiny subset
of these tests.

The better we understand the product and its risks,
K the more wisely we can pick those few tests. /

Ongoing Rev olution in SW Testing Copyright © 2004, Cem Kaner 21

Design Most Tests Early in Development?

“Test then code” is fundamentally different from test-first
programming

Test then code Test-first development
(“proactive testing”)

The tester creates many tests and then The programmer creates 1 test, writes
the programmer codes code, gets the code working, refactors,
moves to next test

Primarily acceptance, or system-level Primarily unit tests and low-level
tests integration

Usual process inefficiencies and delays | Near-zero delay, communication cost
(code, then deliver build, then wait for
test results, slow, costly feedback)

Supports understanding of requirements | Supports exploratory development of
architecture, requirements, & design

Ongoing Revolution in SW Testing Copyright © 2004, Cem Kaner 22

More on Test-Driven Development
Benefits of TDD to the project?

— Provides a structure for working from examples, rather than
from an abstraction. (Supports a common learning / thinking
style.)

— Provides concrete communication with future maintainers.
— Provides a unit-level regression-test suite (change detectors)
* support for refactoring

* Support for maintenance
— Makes bug finding / fixing more efficient

* No roundtrip cost, compared to GUI automation and bug
reporting.

* No (or brief) delay in feedback loop compared to external
tester loop

— Provides support for experimenting with the language

Ongoing Rev olution in SW Testing Copyright © 2004, Cem Kaner 23

Good Tests Should be Reused as Regression Tests?

* Let’s distinguish between the change-detectors at
the code level and Ul / System level regression tests

« Change detectors

— writing these helped the TDD programmer think through the
design & implementation

— near-zero feedback delay and near-zero communication cost
make these tests a strong support for refactoring
« System-level regression
— provide no support for implementation / design

— are run well after the code is put into a build that is released
to testing (long feedback delay)

— run by someone other than the programmer (feedback cost)

Ongoing Revolution in SW Testing Copyright © 2004, Cem Kaner 24

Good Tests Should be Reused as Regression Tests?

« Maintenance of Ul / system-level tests is not free
— change the design - discover the inconsistency = discover

the problem is obsolescence of the test > change the test

 So we have a cost/benefit analysis to consider
carefully:

What information will we obtain from re-use of this test?
What is the value of that information?
How much does it cost to automate the test the first time?

How much maintenance cost for the test over a period of
time?

How much inertia does the maintenance create for the
project?

How much support for rapid feedback does the test suite
provide for the project?

Ongoing Rev olution in SW Testing Copyright © 2004, Cem Kaner 25

Modern Approaches

 What can we achieve with unit testing?

— We can eliminate the need for a broad class of boring,
routine, inefficient system-level tests:

* Hunt & Thomas, Pragmatic Unit Testing, focus on confirmatory tests,
give the example of inserting a large value into a sorted list, and
confirm that it appears at the end of the list.

» We can test that method in many other ways, at the unit level.
— Try a huge value -- Try a huge list
— Try a maximum length list - Try a max+1 length list
— Try a null value - Insert into a null list
— Try a value of wrong type - Try a tied value
— Try a negative value - Try a zero?
— Try a value that should sort to the start of the list.
— Exact middle of the list
— Exercise every error case in the method

Ongoing Rev olution in SW Testing Copyright © 2004, Cem Kaner 26

Modern Approaches

 Many automated Ul tests are unit tests run at the system
level.

— If the programmers do thorough unit testing
 Based on their own test design, or
« Based on a code analyzer / test generator (like Agitator)

— Then apart from a sanity-check sample at the system
level, we don’t have to do these as system tests.

— Instead, we can focus on techniques that exercise the
program more broadly and more interestingly

 Test-driven development groups can benefit from support from
testers (pairing with programmers) via better TDD test design
and better communication into the system test process

Ongoing Revolution in SW Testing Copyright © 2004, Cem Kaner 27

Modern Approaches

There are a few hundred test techniques.

Some are focused on simple tests (narrow scope, could implement
these test ideas in unit tests or few-unit integration tests).

Other tests assume a reasonably stable product (at the unit level)
and let us get to harder-to-mitigate risks:

* Scenario testing (http://www.kaner.com/pdfs/ScenarioSTQE.pdf)
* High volume automation

+ State model based testing in presence of load (interrupts)
 Many of the risks derived from failure mode and effects analysis

These may or may not automate efficiently, and they may or may
not be best-automated with current commercial (as opposed to
open source or not-yet-done) tools

We implement our tests as simply and close-to-the-underlying-
code (maintenance benefits) as is effective and efficient for the
given risks / tasks. Different companies will rationally select
different tradeoffs.

Ongoing Rev olution in SW Testing Copyright © 2004, Cem Kaner 28

Let’s Draw Some Distinctions

Functional testing

Emphasis is on capability / benefits for the user.
The skilled functional tester often gains a deep knowledge of the needs of
customers and customer-supporting stakeholders.

Para-functional testing

Security, usability, accessibility, supportability, localizability, interoperability,
installability, performance, scalability, etc.

The customer / user is not an expert in these attributes but has great need of
them.

Effective testing will often require collaboration and mutual coaching between
programmers and testers.
We have to distinguish between testing for (e.g. contractual) acceptance
and testing for evaluation of suitability, value, and utility. Both are
important, but the automation tradeoffs apply differently.

Preventative testing
TDD collaboration, specification evaluation, testability evaluation

The tester provides support services to the programmers and designers, with the
goals of preventing bugs or making them much easier to expose.

Ongoing Rev olution in SW Testing Copyright © 2004, Cem Kaner 29

A Closing Shot at Metrics

Very few companies have metrics programs today. But most
companies have tried them. Doesn’t that imply that most
companies have abandoned their metrics programs?

Why would they do that? Lazy? Stupid? Unprofessional?

Maybe the metrics programs added no value or negative
value.

A key problem is that measurement influences behavior, and not
always in the ways that you hope. (See Bob Austin’s Managing
and Measuring Performance in Organizations)

Another key problem is that software engineering metrics are
rarely validated. “Construct validity” (how do we know that this
instrument measures that attribute?) almost never appears in the
CS and SWE literature, nor do discussions on determining the
nature of the attribute that we are trying to measure. As a result,
our metrics often fail to measure what we assert they measure,
and they are prime candidates for Austin-style side effects.

Kaner / Bond at http://www.kaner.com/pdfs/metrics2004.pdf)

Ongoing Rev olution in SW Testing Copyright © 2004, Cem Kaner 30

Summary

Testing objectives vary, legitimately. Our testing strategy should be optimized
for our specific project’s objectives.

“Best practices” can be toxic in your context. Do what makes sense, not what is
well marketed.

We test in the real world, we can provide competent services under challenging
circumstances.

Modern unit testing supports initial development of the program and its
maintenance. It also makes it possible for the system tests to be run far more
efficiently and effectively. But that coordination requires tester/programmer
collaboration.

Ul level automation is high maintenance and must be designed for
maintainability. Extensive GUI automation often creates serious inertia and may
expose few bugs and little useful information.

Automation below the Ul level is often cheaper to implement, needs less
maintenance and provides rapid feedback to the programmers.

The value of a test lies in the information it provides. If the information value of a
GUI-level test won’t exceed its automation cost, you shouldn’t automate it.

Testing is investigation. As investigators, we must make the best use of limited
time and resources to sample wisely from a huge population of potential tasks.
Much of our investigation is exploratory--we learn more as we go, and we
continually design tests to reflect our increasing knowledge. Some, and not all,
of these tests will be profitably reusable.

Ongoing Rev olution in SW Testing Copyright © 2004, Cem Kaner 31

A New Software Testing Society

Association for Software Testing
Pat Schroeder is President

| edit the new Journal of the Association for Software
Testing, a peer-reviewed journal that hopes to publish
scholarly papers about practical testing matters.

— (We’'re just forming the Editorial Board. To join JAST’s
Board, write kaner@kaner.com)

www.AssociationForSoftwareTesting.org

Ongoing Rev olution in SW Testing Copyright © 2004, Cem Kaner 32

