Archive for the ‘education’ Category

A proposal for an advanced certification in software testing

Monday, March 3rd, 2014

This is a draft of a proposal to create a more advanced, more credible credential (certification) in software testing.

The core idea is a certification based on a multidimensional collection of evidence of education, experience, skill and good character.

  • I think it is important to develop a credential that is useful and informative.
    • I think we damage the reputation of the field if we create a certification that requires only a shallow knowledge of software testing.
    • I think we damage the value of the certification if we exaggerate how much knowledge or skill is required to obtain it.
  • I think it is important to find a way to tolerate different approaches to software testing, and different approaches to training software testers. This proposal is not based on any one favored “body of knowledge” and it is not tied to any one ideology or group of vendors.

The idea presented here is imperfect—as are the other certifications in our field. It can be gamed—as can the others. Someone who is intent on gaining a credential via cheating and fraud can probably get away with it for a while—but the others have security risks too. This certification does not assure that the certified person is competent—neither do the others. The certification does not subject the certified person to formal professional accountability for their work—neither do the others—and even though certificate holders say that they will follow a code of ethics, we have no mechanism for assuring that they do or punishing them if they don’t—and neither do the others.

With all these we-don’t-do-thises and we-don’t-promise-thats, you might think I’m kidding about this being a real proposal. I’m not.

Even if we agree that this proposed certification lacks the kinds of powers that could be bestowed by law or magic, I think it can provide useful information and that it can create incentives that favor higher ethics in job-seeking and, eventually, professional practice. It is not perfect, but I think it is far better than what we have now.

The Proposal

This credential is based on a collection of several different types of evidence that, taken together, indicate that the certificate holder has the knowledge and skill needed to competently perform the usual services provided by a software tester.

Here are the types of evidence. As you read this, imagine that the Certification Body hosts a website that will permanently post a publicly-viewable dossier (a collection of files) for every person certified by that body. The dossier would include everything submitted by an applicant for certification, plus some additional material. Here’s what we’d find in the file.

Authorization by the Applicant

As part of the application, the applicant for Certification would grant the Certification Board permission to publish all of the following materials. The applicant would also sign a legal waiver that would shield the Board from all types of legal action by the applicant / Certified Tester arising out of publication of the materials described below. The waiver will also authorize the Board to exercise its judgment in assessing the application and will shield the Board from legal action by the applicant if the Board decides, in its unfettered discretion, to reject the applicant’s application or to later cancel the applicant’s Certification.

Education (Academic)

The Certified Tester should have at least a minimum level of formal education. The baseline that I imagine is a bachelor’s-level degree in a field relevant to software testing.

  • Some fields, such as software engineering, are obviously relevant to software testing. But what about others like accounting, mathematics, philosophy, physics, psychology, or technical writing? We would resolve this by requiring the applicant for certification to explain in writing how and why her or his education has proved to be relevant to her or his experiences as a tester and why it should be seen as relevant education for someone in the field.
  • The requirement for formal education should be waived if the applicant requests waiver and justifies the request on the basis of a sufficient mix of practical education and professional achievement.

Education (Practical)

The Certified Tester should have successfully completed a significant amount of practical training in software testing. Most of this training would typically be course-based, typically commercial training. Some academic courses in software testing would also qualify. A non-negotiable requirement is successful completion of at least some courses that are considered advanced. “Successful” completion means that the student completed an exam or capstone project that a student who doesn’t know the material would not pass.

  • There is an obvious accreditation issue here. Someone has to decide which courses are suitable and which are advanced.
  • I think that many different types of courses and different topics might be suitable as part of the practical training. For example, suppose we required 100 classroom-hours of training (1 training day = 6 classroom hours). Perhaps 60 of those hours could be in related fields (programming, software metrics, software-related law, project accounting, etc.) but a core would have to be explicitly focused on testing.
  • I think the advanced course hours (24 classroom hours?) would have to be explicitly advanced software testing courses.
  • There is no requirement that these courses come from any particular vendor or that they follow any particular software testing or software development ideology.

Examination

The Certified Tester should have successfully completed a proctored, advanced, examination in software testing.

  • This requirement anticipates competing exams offered by several different groups that endorse different approaches to software testing. Our field does not have agreement on one approach or even one vocabulary. The appearance of agreement that shows up in industry “standards” is illusory. As a matter of practice (I think, often good practice), the standards are routinely ignored by practitioners. Examinations that adopt or endorse these standards should be welcome but not mandatory.

Which exams are suitable and which are advanced?

There is an obvious accreditation issue here. Someone has to decide which exams are suitable and which are advanced.

I am inclined to tentatively define an advanced exam as one that requires as minimum prerequisites (a) successful completion of a specified prior exam and (b) additional education and experience. For example, ISTQB Foundations would not qualify but an ISTQB Advanced or Expert exam might. Similarly, BBST:Foundations would not qualify but BBST:Bug Advocacy might and BBST:Domain Testing definitely should.

An exam might be separate from a course or it might be a final exam in a sufficiently advanced course.

For an exam to be used by a Certified Tester, the organization that offers and grades the exam must provide the Certification Board with a copy of a sample exam. The organization must attest under penalty of perjury that they believe the sample is fairly representative of the scope and difficulty of the actual current exam. This sample will appear on the Certification Board’s website, and be accessible as a link from the Certified Tester’s dossier. (Thus, the dossier doesn’t show the Certified Tester’s actual exam but it does show an exam that is comparable to the actual one.)

What about the reliability and the validity of the exams?

Let me illustrate the problem with two contrasting examples:

  • I think it is fair to characterize ISTQB as an organization that is striving to create highly reliable exams. To achieve this, they are driven toward questions that have unambiguously correct answers. Even in sample essay questions I have seen for the Expert exam, the questions and the expected answers are well-grounded in a published, relatively short, body of knowledge. I think this is a reasonable and respectable approach to assessment and I think that exams written this way should be considered acceptable for this certification.
  • The BBST assessment philosophy emphasizes several other principles over reliability. We expect answers to be clearly written, tightly focused on the question that was asked, with a strong logical argument in favor of whatever position the examinee takes in her or his answer, that demonstrates relevant knowledge of the field. We expect a diversity of points of view. I think it gives the examiner greater insight into the creativity and depth of knowledge of the examinee. I think this is also a reasonable and respectable approach to assessment that we should also consider acceptable for this certification.

There is a tradeoff between these approaches. Approaches like ISTQB’s are focused on the reliability of the exam, especially on between-grader reliability. This is an important goal. The BBST exams are not focused on this. For certification purposes, we would expect to improve BBST reliability by using paired grading (two examiners) but this is imperfect. I would not expect the same level of reliability in BBST exams that ISTQB achieves. However, in my view of the assessment of cognitively complex skills, I believe the BBST approach achieves greater validity. Complicating the issue, there are problems in the measurement of both, reliability and validity, of education-related exams.

The difference here is not just a difference of examination style. I believe it reflects a difference in ideology.

Somehow, the Certification Board will have to find a way to accredit some exams as “sufficiently serious” tests of knowledge even though one is obviously more reliable than the other, one is obviously more tightly based on a published body of knowledge than the other, etc.

Somehow, the Certification Board will have to find a way to refuse to accredit some exams even though they have the superficial form of an exam. In general, I suspect that the Certification Board will cast a relatively broad net and that if groups like ASQ and QAI offer advanced exams, those exams will probably qualify. Similarly, I suspect that a final exam in a graduate-level university course that is an “advanced” software testing course (prerequisite being successful completion of an earlier graduate-level course in testing) would qualify.

Professional Achievement

Professional achievements include publications, honors (such as awards), and other things that indicate that the candidate did something at a professional level.

An applicant for certification does not have to include any professional achievements. However, if the applicant provides them, they will become part of the applicant’s dossier and will be publicly visible.

Some decisions will lie in the discretion of the Certification Board. For example, the Certification Board:

  • might or might not accept an applicant’s academic background as sufficiently relevant (or as sufficiently complete)
  • might or might not accept an applicant’s training-experience portfolio as sufficient or as containing enough courses that are sufficiently related to software testing

In such cases, the Certification Board will consider the applicant’s professional achievements as additional evidence of the applicant’s knowledge of the field.

References

The applicant will provide at least three letters of endorsement from other people who have stature in the field. These letters will be public, part of the Certified Tester’s dossier. An endorsement is a statement from a person that, in that person’s opinion, the applicant has the knowledge, skills and character needed to competently provide the services of a professional software tester. The letter should provide additional details that establish that the endorser knows the knowledge, skill and character of the applicant well enough to credibly make an endorsement.

  • A person of stature is someone who is experienced in the field and respected. For example, the person might be (this is not a complete list)
    • personally known to the Certification Board
    • a Certified Tester
    • a Senior Member or Distinguished Member or Fellow of ACM, ASQ, or IEEE
  • If one of the endorsers withdraws his or her endorsement, that withdrawal will be published in the Certified Tester’s dossier along with the original endorsement (now marked “withdrawn”) and the Certified Tester will be required to get a new endorser.
  • If one of the apparent endorsers contacts the Certification Board and asserts that s/he did not write an endorsement for an applicant and that s/he does not endorse the applicant, and if the apparent endorser provides credible proof of identify, that letter will be published in the Certified Tester’s dossier along with the original letter (now marked “disputed”).

Professional Experience

The applicant will provide a detailed description of his or her professional history that includes at least N years of relevant experience.

  • The applicant must attest that this description is true and not materially incomplete. It will be published as part of the dossier. Potential future employers will be able to check the claims made here against the claims made in the applicant’s application for work with them.
  • The descriptions of relevant positions will include descriptions of the applicant’s role(s) and responsibilities, including typical tasks s/he performed in that position
  • The applicant’s years of relevant experience and years of formal education will interact: Someone with more formal education that is relevant to the field will be able to become certified with less relevant experience (but never less than K years of experience).

Continuing Education

The candidate must engage in professional activities, including ongoing study, to keep the certification.

Code of Ethics

The candidates must agree to abide by a specific Code of Ethics, such as the ACM code. We should foresee this as a prelude to creating an enforcement structure in which a Certified Tester might be censured or certification might be publicly canceled for unethical conduct.

Administrative Issues

Somehow, we have to form a Certification Board. The Board will have to charge a fee for application because the website, the accrediting activities, evaluation of applications, marketing of the certification, etc., will cost money.

Benefits

This collection of material does not guarantee competence, but it does present a multidimensional view of the capability of an experienced person in the field. It speaks to a level of education and professional involvement and to the credibility of self-assertions made when someone applies for a job, submits a paper for publication, etc. I think that the public association of the endorser with the people s/he endorses will encourage most possible endorsers to think carefully about who they want to be permanently publicly identified with. I think the existence of the dossier will discourage exaggeration and fraud by the Certified Tester.

It is not perfect, but I think it will be useful, and better than what I think we have now.

This is not a certification of a baseline of competence in the way that certifications (licenses) work in fields like law, engineering, plumbing, and cosmetology. Those are regulated professions in which the certified person is subject to penalties and civil litigation for conduct that falls below baseline. Software engineering (including software testing) is not a regulated profession, there is no such cause of action in the courts as “software engineering malpractice,” and there are no established penalties for incompetence. There is broad disagreement in the field about whether such regulations should exist (for example, the Association for Computing Machinery strongly opposes the licensing of software engineers while the IEEE seems inclined to support it) and the creation of this certification does not address the desirability of such regulation.

The Current Goal: A Constructive Discussion

This article is a call for discussion. It is not yet a call for action, though I expect we’ll get there soon.

This article follows up an article I wrote last May about credentialing systems. I identified several types of credentials in use in our field and suggested four criteria for a better credential:

  • reasonably attainable (people could affort to get the credential, and reasonably smart people who worked hard could earn it),
  • credible (intellectually and professionally supported by senior people in the field who have earned good reputations),
  • scalable (it is feasible to build an infrastructure to provide the relevant training and assessment to many people), and
  • commercially viable (sufficient income to support instructors, maintainers of the courseware and associated documentation, assessors (such as graders of the students and evaluators of the courses), some level of marketing (because a credential that no one knows about isn’t worth much), and in the case of this group, money left over for profit. Note that many dimensions of “commercial viability” come into play even if there is absolutely no profit motive—-the effort has to support itself, somehow).

I think the proposal in this article sketches a system that would meet those criteria.

A more detailed draft of this proposal was reviewed at the 2014 Workshop on Teaching Software Testing. We did not debate alternative proposals or attempt to reach consensus. The ideas in this paper are not the product of WTST. Nor are they the responsibility of any participant at WTST. However, I am here acknowledging the feedback I got at that meeting and thanking the participants: Scott Allman, Janaka Balasooriya, Rex Black, Jennifer Brock, Reetika Datta, Casey Doran, Rebecca L. Fiedler, Scott Fuller, Keith Gallagher, Dan Gold, Douglas Hoffman, Nawwar Kabbani, Chris Kenst, Michael Larsen, Jacek Okrojek, Carol Oliver, Rob Sabourin, Mike Sowers, and Andy Tinkham. Payson Hall has also questioned the reasoning and offered useful suggestions.

To this point, we have been discussing whether these ideas are worthwhile in principle. That’s important and that discussion should continue.

We have not yet begun to tackle the governance and implementation issues raised by this proposal. It is probably time to start thinking about that.

  • I’m positively impressed by (what I know of) the governance model of ISTQB and wonder whether we should follow that model.
  • I would expect to be an active supporter/contributor to the governance of this project (for example an active member of the governing Board). However—just as I helped found AST but steadfastly refused to run for President of AST—I believe we can find a better choice than me for chief executive of the project.

Comments?

New Book: Foundations of Software Testing–A BBST Workbook

Friday, February 14th, 2014

New Book: Foundations of Software Testing—A BBST Workbook

Rebecca Fiedler and I just published our first book together, Foundations of Software Testing—A BBST Workbook.

Becky and I started working on the instructional design for the online version of the BBST (Black Box Software Testing) course in 2004. Since then,Foundations has gone through three major revisions. Bug Advocacy and Test Design have gone through two.

Our Workbooks mark our first major step toward the next generation of BBST™.

We are creating the new versions of BBST through Kaner, Fiedler & Associates, a training company that we formed to provide an income stream for ongoing evolution of these courses. BBST is a registered trademark of Kaner, Fiedler & Associates.

What’s in the Book

The Workbook includes slides, lecture transcripts, orientation activities and feedback, application activities, exam advice, and author reflections. Here are some some details:

All the course slides

Foundations has 304 slides. Some of these are out of date. We provide notes on these in the Author’s Reflections.

A transcript of the six lectures.

The transcripts are almost word-for-word the same as the spoken lecture. They actually reproduce the script that I wrote for the lecture. In a few cases, my scripts are a little longer than what actually made it past the video edits. We lay the transcript and the slides out together, side-by-side. In an 8.5×11 printed book, this is a great format for taking notes. Unfortunately, it doesn’t translate to Kindle well, so there is no Kindle edition of the book.

Four Orientation Activities

Orientation activities introduce students to a key challenge considered in a lecture. The student puzzles through the activity for 30 to 90 minutes, typically before watching the lecture, then sees how the lecture approaches this type of problem. The typical Foundations course has two to four of these.

The workbook presents the instructions for four activities, along with detailed feedback on them, based on past performance of students in the online and university courses.

I revised, rewrote or added (new) all of these activities for this Workbook. Because, in my opinion, the most important learning in BBST comes from what the students actually do in the class, the new Orientation and Application activities create a substantial revision to the course.

In my university courses, I practice continuous quality improvement, revising all of them every term in response to (a) my sense (and to what ever relevant data I have collected) about strengths and weaknesses that showed up in previous of the course or (b) ideas that have demonstrated their value in other courses and can be imported into this one. Most of the updates are grounded in a long series of revisions that I used and evaluated in my university-course version of BBST.

Two Application Activities

An application activity applies ideas or techniques presented in a lecture or developed over several lectures. The typical application activity calls for two to six hours of work, per student. The typical Foundations course has one to two of these.

One of these is revised from the public BBST, the other completely rewritten.

Advice on answering our essay-style exam questions

The advice runs 11 pages. I also provide a practice question and detailed feedback on the structure of the answer.

I think the advice is good for anyone taking the course, but it is particularly focused on university students who are preparing for an exam that will yield graded results (A, B, Pass-with-distinction, etc.). The commercial versions of BBST are typically pass-fail, so some of the fine details in this advice are beyond the needs of those readers. If you are a university student, I recommend this as a tighter and more polished presentation than the exam-preparation essay included in the public course.

Author reflections

My reflections present my sense of the strengths and weaknesses of the current course, the ways we are addressing those with the new activities, and some of the changes we see coming in the next generation of videos.

Because Foundations is written to introduce students to the fundamental challenges in software testing, some of my reflections add commentary on widely-debated issues in the field. Some of these might become focus points for the usual crowd to practice their Sturm und Drang on Twitter.

Who the Book is For

We want to support three groups with the BBST Workbooks:

  • Self-studiers. Many people watch the course videos on their own. The course videos for the current version of Foundations are available for free, along with the slides, the course readings, and the public-course versions of four activities and the study guide (list of essay questions for the exam). The Workbook updates the activities, and provides detailed feedback for all of the orientation activities, and provides several design notes on the orientation and application activities. If you are studying BBST on your own or with a few friends, we believe this provides much better support than the videos alone.
  • In-house trainers. If you are planning to teach BBST to staff at your company, the Workbook is an inexpensive textbook to support the students. The feedback for the activities provides a detailed survey of common issues and ideas raised in each activity. If your trainees submit their work to you for review, you might want to supplement these notes with comments that are specific to each student’s work. The comments in the workbook should cover most of the comments that you would otherwise repeat from student to student. The instructors’ reflections will, we hope, give you ideas about how to tailor the application activities (or replace them) to make them suitable for your company.
  • Students in instructor-led courses. The BBST Foundations in Software Testing Workbook is an affordably-priced (retail price $19.99) supplement to any instructor-led course. Students will appreciate the convenience of print versions of the course slides and lectures for ongoing reference. Instructors will appreciate the level of feedback provided to students in the workbook.

Buy the Book
Foundations of Software Testing: A BBST Workbook is available from:

Evolution of the BBST Courses

Thursday, February 13th, 2014

With our first teaching of the new BBST:Domain Testing course (based on The Domain Testing Workbook) and our revision of BBST:Foundations with the Foundations of Software Testing workbook, Rebecca Fiedler and I have started to introduce the next generation of BBST. Recently, we’ve been getting requests for papers or interviews on where BBST came from and where it’s going.

  • This note is a short summary of the history of BBST. You can find many more details in the articles I’ve been posting to this blog over the last decade, as I tried to think through the course design’s strengths, weaknesses and potential.
  • My next post, and an upcoming article in Testing Circus, look at the road ahead.

What is BBST™ ?

BBST is a series of courses on Black Box Software Testing. The overall goal of the series is to improve the state of the practice in software testing by helping testers develop useful testing skills and deeper insights into the challenges of the field.

(Note: BBST is a registered trademark of Kaner, Fiedler & Associates.)

Today’s BBST Courses

Today, most people familiar with the BBST courses think of a four-week, fully online course. Rebecca Fiedler and I started working on the instructional design for the BBST online courses back in 2004, with funding from the National Science Foundation. The courses have gotten excellent reviews. We’ve taken Foundations through three major revisions. Bug Advocacy and Test Design have had two. We’re working on our next major update now. You’ll read more about that in my next post.

The typical instructor-led course is organized around six lectures (about six hours of talk, divided into one-hour parts), with a collection of activities. To successfully complete a typical instructor-led course, a student spends about 12-15 hours per week for 4 weeks (48-60 hours total). Most of the course time is spent on the activities:

  • Orientation activities introduce students to a key challenge considered in a lecture. The student puzzles through the activity for 30 to 90 minutes, typically before watching the lecture, then sees how the lecture approaches this type of problem. The typical Foundations course has two to four of these.
  • Application activities call for two to six hours of work. It applies ideas or techniques presented in a lecture or developed over several lectures. The typical Foundations course has one to two of these.
  • Multiple-choice quizzes help students identify gaps in their knowledge or understanding of key concepts in the course. These questions are tough because they are designed to be instructional or diagnostic (to teach you something, to deepen your knowledge of something, or to help you recognize that you don’t understand something) rather than to fairly grade you.
  • Various other discussions that help the students get to know each other better, chew on the course’s multiple-choice quiz questions, or consider other topics of current interest.
  • An essay-style final exam.

In the instructor-led course, students get feedback on the quality of their work from each other and, to a lesser or greater degree (depends on who’s teaching the course), they get feedback from the instructors. Students in our commercial courses (which we offer through Kaner, Fiedler & Associates) get a lot of feedback. Students in courses taught by unpaid volunteer instructors are more likely to get most of their feedback from the other students.

So, that’s today (in the online course).

However, BBST has actually been around for 20 years.

Background on the BBST Course Design

I started teaching BBST in 1994, with Hung Quoc Nguyen, for the American Society for Quality in Silicon Valley. This was the commercial version of the course (taught to people working as testers). Development of the course was significantly influenced by:

  • Detailed peer reviews of the live class and of the circulating slide decks. The reviews included detailed critiques from colleagues when I made significant course updates (I offered free beta-review classes to test the updates).
  • Co-teaching the material with colleagues. We would learn together by cross-teaching material, often challenging points in each other’s slides or lecture in front of the students. For example, I taught with James Bach, Elisabeth Hendrickson, Doug Hoffman and (for the metrics material) Pat Bond, a professor at Florida Tech.
  • Rational Software, which contracted with me to create a customized version of BBST to support testing under the Rational Unified Process. They criticized the course in detail over several pilot teachings, and allowed me to apply what I learned back to the original course.

In 1999, I decided that if I wanted to learn how to significantly improve the instructional value of the course, I was going to have to see how teachers help students learn complex topics and skills in university. My sense was, and is, that good university instruction goes much deeper and demands more from the students than most commercial training.

Florida Tech hired me in 2000 to teach software engineering and encouraged me to evolve BBST down two parallel tracks:

  • a core university course that would be challenging for our graduate students and a good resume-builder when our students looked for jobs
  • a stronger commercial course that demanded more from the students.

We correctly expected that the two tracks would continually inform each other. Getting feedback from practitioners would help us keep the academic stuff real and useful. Trying out instructional ideas in the classroom would give us ideas for redesigning the learning experience of commercial students.

By 2003, I realized that most of my students were doing most of their learning outside the classroom. They claimed to like my lectures, but they were learning from assignments and discussions that happened out of the classroom. In 2004, I decided to try taping the lectures. The students could watch these at home, while we did activities in the classroom that had previously been done out of class. This went well, and in 2005, I created a full set of course videos.

I used the 2005 videos in my own classes. I put a Creative Commons license on the videos and posted them, along with other supporting materials, on my lab’s website. Rebecca Fiedler and I also started giving talks to educators about our results, such as these two papers (Association for Educational & Communications Technology conference and the Sloan Conference on Asynchronous Learning Networks in 2005).

These days, what we were doing has a name (“flipping“) and the Open Courseware concept is old news. Back then, it was still hard to find examples of other people doing this. Even though many other people were experimenting with the same ideas, not many people were yet publishing and so we had to puzzle through the instructional ideas by reading way too much stuff and thinking way too hard about way too many conflicting opinions and results. We summarized our own design ideas in the 2005 presentations (cited above). A good sample of the literature we were reading appeared in our applications for funding to the National Science Foundation, such as the one that was funded (2007), which gave us the money to pay graduate students to help with evaluation and redesign of the course (yielding the current public version).

For readers interested in the “science” that informed our course design, I’m including an excerpt from the 2007 Grant Proposal at the end of this article.

The Collaboration with AST

While we were sketching the first BBST videos, we were also working to form AST (the Association for Software Testing). AST incorporated in 2004. Perhaps a year later, Rebecca and I decided that the academic version of online BBST could probably be adapted for working testers. The AST activists at that time were among my closest professional friends, so it was natural to bring this idea to them.

We began informally, of course. We started by posting a set of videos on a website, but people kept asking for instructor support—for a “real” class. By this point (late 2006), the Florida Tech course was maturing and I was confident (in retrospect, laughably overconfident) that I could translate what was working in a mixed online-plus-face-to-face university class to a fully online course for practitioners located all over the world. The result worked so badly that everyone dropped out (even the instructors).

We learned a lot from the details of the failure, looked more carefully at how other university instructors had redesigned traditional academic courses to make them effective for remote students who had full-time jobs and who probably hadn’t sat in an academic classroom for several years (so their academic skills were rusty). After a bunch more pilot-testing, I offered the first BBST:Foundations as a one-month class (essentially the modern structure) in October, 2007.

We offered BBST:Foundations through AST, adding BBST:Bug Advocacy in 2008, redoing BBST:Foundations (new slides, videos, etc.) in 2010, and adding BBST:Test Design in 2012.

AST was our learning lab for commercial courseware. Florida Tech’s testing courses, and my graduate research assistants at Florida Tech, were my learning lab for the academic courseware. I would try new ideas at Florida Tech and bring the ones that seemed promising into the AST courses as minor or major updates. All the while, I was publishing the courseware at my lab’s website, testingeducation.org, and encouraging other people to use the material in their courses.

We trained and supervised a crew of volunteer instructors for AST’s BBST, but other people were teaching the course (or parts of it) too. This included professors, commercial trainers, managers teaching their own staff how to test, etc. Becky created an instructor’s course (how to teach BBST), which we offered as an instructor-led course through AST but which we also offered as a free learning experience on the web (study it yourself at your own pace). In 2012, we published a 357-page Instructor’s Manual for BBST. We published the book as a Technical Report (a publication method available to university professors) so that we could supply it to the public for free.

Underlying much of the AST collaboration was a hope that we could create an open courseware community that would function like some of the successful open software communities.

  • In the open source software world, many of the volunteers who maintain and enhance open source software are able to charge people for support services. That is, the software (courseware) is free but if you want support, you have to pay for it. The support money creates an income stream that makes it possible for skilled people to spend time improving the software.
  • We hoped that we could create a similar type of structure for open source courseware (the BBST courses). You can see the thinking, for example, in a 2008 paper that Rebecca and I wrote with Scott Barber, Building a free courseware community around an online software testing curriculum.

It turns out that this is a very complex idea. It is probably too complex for a small professional society that handles most of its affairs pretty informally.

For now, Rebecca and I have formed Kaner, Fiedler & Associates to sustain BBST instead. That is, KFA sells commercial BBST training and the income stream makes it possible for us to make new-and-improved versions of BBST.

AST might also create its own project to maintain and enhance BBST. If so, we’ll probably see the evolution of contrasting designs for the next generations of the courses. We think we’d learn a lot from that dynamic and we hope that it happens.

An Excerpt from our 2007 Grant Proposal

This is from our application for NSF Award CCLI-0717613, Adaptation and Implementation of an Activity-Based Online or Hybrid Course in Software Testing. (When we acknowledge support from NSF, we are required to remind you that National Science Foundation does not endorse any opinions, findings, conclusions or recommendations that arose out of NSF-funded research.) The full application is available online but it is very concisely written, structured according to very specific NSF guidelines, and packed with points that address NSF-specific concerns. Here is the most relevant section of that 56-page document here, in terms of explaining our approach and literature review for the course’s instructional design.

3. Our Current Course (Black Box Software Testing—BBST)

We adopted the new teaching method in Spring 2005 after pilot work in 2004. Our new approach spends precious student contact hours on active learning experiences (more projects, seminars and labs) that involve real-world problems, communication skills, critical thinking, and instructor scaffolding [129, 136] without losing the instructional benefits of polished lectures. Central to a problem-based learning environment is that students focus on “becoming a practitioner, not simply learning about practice” [122, p. 3]

Anderson et al.’s [11] update to Bloom’s taxonomy [20] is two-dimensional, knowledge and cognitive processing.

  • On the Knowledge dimension, the levels are Factual Knowledge (such as the definition of a software testing technique), Conceptual Knowledge (such as the theoretical model that predicts that a given test technique is useful for finding certain kinds of bugs), Procedural Knowledge (how to apply the technique), and Metacognitive Knowledge (example: the tester decides to study new techniques on realizing that the ones s/he currently knows don’t apply well to the current situation.)
  • On the Cognitive Process dimension, the levels are Remembering (such as remembering the name of a software test technique that is described to you), Understanding (such as being able to describe a technique and compare it with another one), Applying (actually doing the technique), Analyzing (from a description of a case in which a test technique was used to find a bug, being able to strip away the irrelevant facts and describe what technique was used and how), Evaluating (such as determining whether a technique was applied well, and defending the answer), and Creating (such as designing a new type of test.).

For most of the material in these classes, we want students to be able to explain it (conceptual knowledge, remembering, understanding), apply it (procedural knowledge, application), explain why their application is a good illustration of how this technique or method should be applied (understanding, application, evaluation), and explain why they would use this technique instead of some other (analysis).

3.1 We organize classes around learning units that typically include:

  • Video lecture and lecture slides. Students watch lectures before coming to class. Lectures can convey the lecturer’s enthusiasm, which improves student satisfaction [158] and provide memorable examples to help students learn complex concepts, tasks, or cultural norms [47, 51, 115]. They are less effective for teaching behavioral skills, promoting higher-level thinking, or changing attitudes or values [19]. In terms of Bloom’s taxonomy [11, 20], lectures would be most appropriate for conveying factual and conceptual knowledge at the remembering and understanding levels. Our students need to learn the material at these levels, but as part of the process of learning how to analyze situations and problems, apply techniques, and evaluate their own work and the work of their peers. Stored lectures are common in distance learning programs [138]. Some students prefer live lectures [45, 121] but on average, students learn as well from video as live lecture [19, 139]. Students can replay videos [53] which can help students whose first language is not English. Web-based lecture segments supplement some computer science courses [34, 44]. Studio-taped, rehearsed lectures with synchronously presented slides (like ours) have been done before [29]. Many instructors tape live lectures, but Day and Foley [30-34] report their students prefer studio-produced lectures over recorded live lectures. We prefer studio-produced lectures because they have no unscripted interruptions and we can edit them to remove errors and digressions.
  • Application to a product under test. Each student joins an open source software project (such as Open Office or Firefox) and files work with the project (such as bug reports in the project’s bug database) that they can show and discuss during employment interviews. This helps make concepts “real” to students by situating them in the development of well-regarded products [118]. It facilitates transfer of knowledge and skills to the workplace, because students are doing the same tasks and facing the same problems they would face with commercial software [25]. As long as the assignments are not too far beyond the skill and knowledge level of the learner, authentic assignments yield positive effects on retention, motivation, and transfer [48, 52, 119, 153].
  • Classroom activities. We teach in a lab with one computer per student. Students work in groups. Activities are open book, open web. The teacher moves from group to group asking questions, giving feedback, or offering supplementary readings that relate to the direction taken by an individual group. Classroom activities vary. Students might apply ideas, practice skills, try out a test tool, explore ideas from lecture, or debate a question from the study guide. Students may present results to the class in the last 15 minutes of the 75-minute class. They often hand in work for (sympathetic) grading: we use activity grades to get attention [141] and give feedback, not for high-stakes assessment. We want students laughing together about their mistakes in activities, not mourning their grades [134].
  • Examples. These supplementary readings or videos illustrate application of a test technique to a shipping product. Worked examples can be powerful teaching tools [25], especially when motivated by real-life situations. They are fundamental for some learning styles [43]. Exemplars play an important role in the development and recollection of simple and complex concepts [23, 126, 146]. The lasting popularity of problem books, such as the Schaum’s Outline series and more complex texts like Sveshnikov [148] attests to the value of example-driven learning, at least for some learners. However, examples are not enough to carry a course. In our initial work under NSF Award EIA-0113539 ITR/SY+PE: Improving the Education of Software Testers, we expected to be able to bring testing students to mastery of some techniques through practice with a broad set of examples. Padmanabhan [113, 132] applied this to domain testing in her Master’s thesis project at Florida Tech, providing students with 18 classroom hours of instruction, including lecture, outlines of ways to solve problems, many practice exercises and exams. Students learned exactly what they were taught. They could solve new problems similar to those solved in class. However, in their final exam, we included a slightly more complicated problem that required them to apply their knowledge in a way that had been described in lecture but not specifically practiced. The students did the same things well, in almost exactly the same ways. However, they all failed to notice problems that should have been obvious to them but that only required a small stretch from their previous drills. This result was a primary motivator for us to redesign the testing course from a lecture course heavy with stories, examples and practice to more heavily emphasize more complex activities.
  • Assigned readings.
  • Assignments, which may come with grading rubrics. These are more complex tasks than in-class activities. Students typically work together over a two-week period.
  • Study guide questions. At the start of the course, we give students a list of 100 questions. All midterm and final exam questions come from this pool. We discuss use and grading of these questions in [60] and make that paper available to students. We encourage group study, especially comparison of competing drafts of answers. We even host study sessions in a café off campus (buying cappuccinos for whoever shows up). We encourage students to work through relevant questions in the guide at each new section of the class. These help self-regulated learners monitor their progress and understanding—and seek additional help as needed. They can focus their studying and appraise the depth and quality of their answers before they write a high-stakes exam. Our experience of our students is consistent with Taraban, Rynearson, & Kerr’s [149]—many students seem not to be very effective readers or studiers, nor very strategic in the way they spend their study time—as a result, they don’t do as well on exams as we believe they could. Our approach gives students time to prepare thoughtful, well-organized, peer-reviewed answers. In turn, this allows us to require thoughtful, well-organized answers on time-limited exams. This maps directly to one of our objectives (tightly focused technical writing). We can also give students complex questions that require time to carefully read and analyze, but that don’t discriminate against students whose first language is not English because these students have the questions well in advance and can seek guidance on the meaning of a question.

Excerpt from the Proposal’s references:

11. Anderson, L.W., Krathwohl, D.R., Airasian, P.W., Cruikshank, K.A., Mayer, R.A., Pintrich, P.R., Raths, J. and Wittrock, M.C. A Taxonomy for Learning, Teaching &  Assessing: A Revision of Bloom’s Taxonomy of Educational Objectives. Longman, New York, 2001.

19. Bligh, D.A. What’s the Use of Lectures? Jossey-Bass, San Francisco, 2000.

20. Bloom, B.S. (ed.), Taxonomy of Educational Objectives: Book 1 Cognitive Domain. Longman, New York, 1956

23. Brooks, L.R. Non-analytic concept formation and memory for instances. in Rosch, E. and Lloyd, B.B. eds. Cognition and categorization, Erlbaum, Hillsdale, NJ, 1978, 169-211.

25. Clark, R.C. and Mayer, R.E. e-Learning and the Science of Instruction. Jossey-Bass/Pfeiffer, San Francisco, CA, 2003.

29. Dannenberg, R.P. Just-In-Time Lectures, undated.

30. Day, J.A. and Foley, J. Enhancing the classroom learning experience with Web lectures: A quasi-experiment GVU Technical Report GVU-05-30, 2005.

31. Day, J.A. and Foley, J., Evaluating Web Lectures: A Case Study from HCI. in CHI ’06 (Extended Abstracts on Human Factors in Computing Systems), (Quebec, Canada, 2006), ACM Press, 195-200. Retrieved January 4, 2007, from http://www3.cc.gatech.edu/grads/d/Jason.Day/documents/er703-day.pdf

32. Day, J.A., Foley, J., Groeneweg, R. and Van Der Mast, C., Enhancing the classroom learning experience with Web lectures. inInternational Conference of Computers in Education, (Singapore, 2005), 638-641. Retrieved January 4, 2007, fromhttp://www3.cc.gatech.edu/grads/d/Jason.Day/documents/ICCE2005_Day_Short.pdf

33. Day, J.A., Foley, J., Groeneweg, R. and Van Der Mast, C. Enhancing the classroom learning experience with Web lecturesGVU Technical Report GVU-04-18, 2004.

34. Day, J.A. and Foley, J.D. Evaluating a web lecture intervention in a human-computer interaction course. IEEE Transactions on Education49 (4). 420-431. Retrieved December 31, 2006.

43. Felder, R.M. and Silverman, L.K. Learning and teaching styles in engineering education. Engineering Education78 (7). 674-681.

44. Fintan, C., Lecturelets: web based Java enabled lectures. in Proceedings of the 5th annual SIGCSE/SIGCUE ITiCSE Conference on Innovation and technology in computer science education, ( Helsinki, Finland, 2000), 5-8.

45. Firstman, A. A comparison of traditional and television lectures as a means of instruction in biology at a community college., ERIC, 1983.

47. Forsyth, D., R. The Professor’s Guide to Teaching: Psychological Principles and Practices. American Psychological Association, Washington, D.C., 2003.

48. Gagne, E.D., Yekovich, C.W. and Yekovich, F.R. The Cognitive Psychology of School Learning. HarperCollins, New York, 1994.

51. Hamer, L. A folkloristic approach to understanding teachers as storytellers. International Journal of Qualitative Studies in Education12 (4). 363-380, from http://ejournals.ebsco.com/direct.asp?ArticleID=NLAW20N8B16TQKHDEECM.

52. Haskell, R.E. Transfer of learning: Cognition, instruction, and reasoning. Academic Press, San Diego, 2001.

53. He, L., Gupta, A., White, S.A. and Grudin, J. Corporate Deployment of On-demand Video: Usage, Benefits, and Lessons, Microsoft Research, Redmond, WA, 1998, 12.

60. Kaner, C., Assessment in the software testing course. in Workshop on the Teaching of Software Testing (WTST), (Melbourne, FL, 2003), from http://www.kaner.com/pdfs/AssessmentTestingCourse.pdf

113. Kaner, C. and Padmanabhan, S., Practice and transfer of learning in the teaching of software testing. in Conference on Software Engineering Education & Training, (Dublin, 2007).

115. Kaufman, J.C. and Bristol, A.S. When Allport met Freud: Using anecdotes in the teaching of Psychology. Teaching of Psychology28 (1). 44-46.

118. Lave, J. and Wenger, E. Situated Learning: Legitimate Peripheral Participation. Cambridge University Press, Cambridge, England, 1991.

119. Lesh, R.A. and Lamon, S.J. (eds.). Assessment of authentic performance in school mathematics. AAAS Press, Washington, DC, 1992.

121. Maki, W.S. and Maki, R.H. Multimedia comprehension skill predicts differential outcomes of web-based and lecture courses.Journal of Experimental Psychology: Applied8 (2). 85-98.

122. MaKinster, J.G., Barab, S.A. and Keating, T.M. Design and implementation of an on-line professional development community: A project-based learning approach in a graduate seminar Electronic Journal of Science Education, 2001.

126. Medin, D. and Schaffer, M.M. Context theory of classification learning. Psychological Review85 (207-238)

129. National Panel Report. Greater Expectations: A New Vision for Learning as a Nation Goes to College, Association of American Colleges and Universities, Washington, D.C., 2002.

132. Padmanabhan, S. Domain Testing: Divide & Conquer Department of Computer Sciences, Florida Institute of Technology, Melbourne, FL, 2004.

134. Paris, S.G. Why learner-centered assessment is better than high-stakes testing. in Lambert, N.M. and McCombs, B.L. eds.How Students Learn: Reforming Schools Through Learner-Centered Education, American Psychological Association, Washington, DC, 1998.

136. Project Kaleidoscope. Project Kaleidoscope Report on Reports: Recommendations for Action in support of Undergraduate Science, Technology, Engineering, and Mathematics. Investing in Human Potential: Science and Engineering at the Crossroads, Washington, D.C., 2002. Retrieved January 16, 2006, from http://www.pkal.org/documents/RecommentdationsForActionInSupportOfSTEM.cfm.

138. Rossman, M.H. Successful online teaching using an asynchronous learner discussion forum. Journal of Asynchronous Learning Networks3 (2), from http://www.sloan-c.org/publications/jaln/v3n2/v3n2_rossman.asp.

139. Saba, F. Distance education theory, methodology, and epistemology: A pragmatic paradigm. in Moore, M.G. and Anderson, W.G. eds. Handbook of Distance Education, Lawrence Erlbaum Associates, Mahwah, New Jersey, 2003, 3-20.

141. Savery, J.R. and Duffy, T.M. Problem Based Learning: An Instructional Model and Its Constructivist Framework, Indiana University, Bloomington, IN, 2001.

146. Smith, D.J. Wanted: A New Psychology of Exemplars. Canadian Journal of Psychology59 (1). 47-55

148. Sveshnikov, A.A. Problems in probability theory, mathematical statistics and theory of random functions. Saunders, Philadelphia, 1968

149. Taraban, R., Rynearson, K. and Kerr, M. College students’ academic performance and self-reports of comprehension strategy use. Reading Psychology21 (4). 283-308.

153. Van Merrienboer, J.J.G. Training complex cognitive skills: A four-component instructional design model for technical training. Educational Technology Publications, Englewood Cliffs, NJ, 1997.

158. Williams, R.G. and Ware, J.E. An extended visit with Dr. Fox: Validity of student satisfaction with instruction ratings after repeated exposures to a lecturer. American Educational Research Journal14 (4). 449-457.

On the design of advanced courses in software testing

Sunday, January 19th, 2014

This year’s Workshop on Teaching Software Testing (WTST 2014) is on teaching advanced courses in software testing. During the workshop, I expect we will compare notes on how we design/evaluate advanced courses in testing and how we recognize people who have completed advanced training.

This post is an overview of one of the two presentations I am planning for WTST.

This presentation will consider the design of the courses. The actual presentation will rely heavily on examples, mainly from BBST (Foundations, Bug Advocacy, Test Design), from our new Domain Testing course, and from some of my non-testing courses, especially statistics and metrics. The slides that go with these notes will appear at the WTST site in late January or early February.

In the education community, a discussion like this would come as part of a discussion of curriculum design. That discussion would look more broadly at the context of the curriculum decisions, often considering several historical, political, socioeconomic, and psychological issues. My discussion is more narrowly focused on the selection of materials, assessment methods and teaching-style tradeoffs in a specialized course in a technical field. The broader issues come into play, but I find it more personally useful to think along six narrower dimensions:

  • content
  • institutional considerations
  • skill development
  • instructional style
  • expectations of student performance
  • credentialing

Content

In terms of the definition of “advanced”, I think the primary agreement in the instructional community is that there is no agreement about the substance of advanced courses. A course can be called advanced if it builds on other courses. Under this institutional definition, the ordering of topics and skills (introductory to advanced) determines what is advanced, but that ordering is often determined by preference or politics rather than by principle.

I am NOT just talking here about fields whose curricula involve a lot of controversy. Let me give an example. I am currently teaching Applied Statistics (Computer Science 2410). This is parallel in prerequisites and difficulty to the Math department’s course on Mathematical Statistics (MTH 2400). When I started teaching this, I made several assumptions about what my students would know, based on years of experience with the (1970′s to 1990′s) Canadian curriculum. I assumed incorrectly that students would learn very early about the axioms underlying algebra—this was often taught as Math 100 (1st course in the university curriculum). Here, it seems common to find that material in 3rd year. I also assumed incorrectly that my students would be very experienced in the basics of proving theorems. Again mistaken, and to my shock, many CS students will graduate, having taken several required math courses, with minimal skills in formal logic or theorem proof. I’m uncomfortable with these choices (in the “somebody moved my cheese” sense of the word “uncomfortable”)—it doesn’t feel right, but I am confident that these students studied other topics instead, topics that I would consider 3rd-year or 4th-year. Even in math, curriculum design is fluid and topics that some of us consider foundational, others consider advanced.

In a field like ours (testing) that is far more encumbered with controversy, there is a strong argument for humility when discussing what is “foundational” and what is “advanced”.

Institutional Considerations

In my experience, one of the challenges in teaching advanced topics is that many students will sign up who lack basic knowledge and skills, or who expect to use this course as an opportunity to relitigate what they learned in their basic course(s). This is a problem in commercial and university courses, but in my experience, it is much easier to manage in a university because of the strength and visibility of the institutional support.

To make space for advanced courses, institutions that designate a courses as advanced are likely to

  • state and enforce prerequisites (courses that must be taken, or knowledge/skill that must be demonstrated before the student can enrol in the advanced course)
  • accept transfer credit (a course can be designated as equivalent to one of the institution’s courses and serve as a prerequisite for the advanced course)

The designation sets expectations. Typically, this gives instructors room to:

  1. limit class time spent rehashing foundational material
  2. address topics that go beyond the foundational material (whatever material this institution has designated as foundational)
  3. tell students who do not know the foundational material (or who cannot apply it to the content of the advanced course) that it is their responsibility to catch up to the rest of the class, not the course’s responsibility to slow down for them
  4. demand an increased level of individual performance from the students (not just work products on harder topics, but better work products that the student produces with less handholding from the instructor)

Note clearly that in an institution like a university, the decisions about what is foundational, what is advanced, and what prerequisites are required for a particular course are made by groups of instructors, not by the administrators of the institution. This is an idealized model–it is common for institutional administrators to push back, encouraging instructors to minimize the number of prerequisites they demand for any particular course and encouraging instructors to take a broader view of equivalence when evaluating transfer credits. But at its core, the administration adopts structures that support the four benefits that I listed above (and probably others). I think this is the essence of what we mean by “protecting the standards” of the institution.

Skill Development

I think of a skill as a type of knowledge that you can apply (you use it, rather than describe it) and your application (your peformance) improves with deliberate practice.

Students don’t just learn content in courses. They learn how to learn, how to investigate and find/create new ideas or knowledge on their own, how to find and understand the technical material of their field, how to critically evaluate ideas and data, how to communicate what they know, how to work with other students, and so on. Every course teaches some of these to some degree. Some courses are focused on these learning skills.

Competent performance in a professional field involves skills that go beyond the learning skills. For example, skills we must often apply in software testing include:

  • many test design techniques (domain testing, specification-based testing, etc.). Testers get better with these through a combination of theoretical instruction, practice, and critical feedback
  • many operational tasks (setting up test systems, running tests, noting what happened)
  • many advanced communication skills (writing that combines technical, persuasive and financial considerations)

Taxonomies like Bloom’s make the distinction between memorizable knowledge and application (which I’m describing as skill here). Some courses, and some exams, are primarily about memorizable knowledge and some are primarily about application.

In general, in my own teaching, I think of courses that focus on memorizable knowledge as survey courses (broad and shallow). I think of survey courses as foundational rather than advanced.

Most survey courses involve some application. The student learns to apply some of the content. In many cases, the student can’t understand the content without learning to apply it at least to simple cases. (In our field, I think domain testing–boundary and equivalence class analysis–is like this.) It seems to me that courses run on a continuum, how much emphasis on learning things you can remember and describe versus learning ways to apply knowledge more effectively. I think of a course that is primarily a survey course as a survey course, even if it includes some application.

Instructional Style

Lecture courses are probably the easiest to design and the easiest to sell. Commercial and university students seem to prefer courses that involve a high proportion of live lecture.

Lectures are effective for introducing students to a field. They introduce vocabulary (not that students remember much of it–they forget most of what they learn in lecture). They convey attitudes and introduce students to the culture of the field. They can give students the sense that this material is approachable and worth studying. And they entertain.

Lectures are poor vehicles for application of the material (there’s little space for students to try things out, get feedback and try them again).

In my experience, they are usually also poor vehicles for critical thinking (evaluating the material). Some lecturers develop a style that demands critical thinking from the students (think of law schools) but I think this requires very strong cultural support. Students understand, in law school, that they will flunk out if they come to class unprepared and are unwilling or unable to present and defend ideas quickly, in response to questions that might come from a professor at any time. Lawyers view the ability to analyze, articulate and defend in real time as a core skill in their field and so this approach to teaching is considered appropriate. In other fields that don’t prioritize oral argumentation so highly, a professor who relied on this teaching style and demanded high performance from every student, would be treated as unusual and perhaps inappropriate.

As students progress from basic to advanced, the core experiences they need to support further progress also change, from lecture to activities that require them to do more–more applications to increasingly complex tasks, more critical evaluation of what they are doing, what others are doing, and what they are being told to do or to accept as correct or wise. Fewer things are correct. More are better-for-these-reasons or better-for-these-purposes.

Expectations of Student Performance

More advanced courses demand that students take more responsibility for the quality of their work:

  • The students expect, and tolerate, less specific instructions. If they don’t understand the instructions, the students understand that it is their responsibility to ask for clarification or to do other research to fill in the blanks.
  • The students don’t expect (or know they are not likely to get) worked examples that they can model their answers from or rubrics (step-by-step evaluation guides) that they can use to structure their answers. These are examples of scaffolding, instructional support structures to help junior students accomplish new things. They are like the training wheels on bicycles. Eventually, students have to learn to ride without them. Not just how to ride down this street for these three blocks, but how to ride anywhere without them. Losing the scaffolding is painful for many students and some students protest emphatically that it is unfair to take these away. I think the trend in many universities has been to provide more scaffolding for longer. This cuts back on student appeals and seems to please accreditors (university evaluators) but I think this delays students’ maturation in their field (and generally in their education).

One of the puzzles of commercial instruction is how to assess student performance. We often think of assessment in terms of passing or failing a course. However, assessment is more broadly important, for giving a student feedback on how well she knows the material or how well she does a task. There has been so much emphasis on high-stakes assessment (you pass or you fail) in academic instruction that many students don’t understand the concept of formative assessment (assessment primarly done to give the student feedback in order to help the student learn). This is a big issue in university instruction too, but my experience is that commercial students are more likely to be upset and offended when they are given tough tasks and told they didn’t perform well on them. My experience is that they will make more vehement demands for training wheels in the name of fairness, without being willing to accept the idea that they will learn more from harder and less-well-specified tasks.

Things are not so well specified at work. More advanced instruction prepares students more effectively for the uncertainties and demands of real life. I believe that preparation involves putting students into uncertain and demanding situations, helping them accept this as normal, and helping them learn to cope with situations like these more effectively.

Credentialing

Several groups offer credentials in our field. I wrote recently about credentialing in software testing at http://kaner.com/?p=317. My thoughts on that will come in a separate note to WTST participants, and a separate presentation.

Last call for WTST 2014

Sunday, November 24th, 2013

This year’s Workshop on Teaching Software Testing is focused on designing and teaching advanced courses in software testing. It is in sunny Florida, in late January 2014. Right after WTST, we will teach a 5-day pilot of the Domain Testing course. You can apply to attend either one.

We expect the WTST discussion to flow down two paths. At this point, we are not sure which will dominate:

1. What are the characteristics of a genuinely “advanced” testing course?

What are people teaching or designing at this level and what design decisions and assessment decisions are they making? What courses should we be designing?

2. What should the characteristics be for an advanced certification in software testing?

I’ve been criticizing the low bar set by ISTQB’s, QAI’s, and ASQ’s certifications for over 15 years. From about 1996 to (maybe it was) 2003, I worked with several colleagues on ideas for a better certification. As I pointed out recently, those ideas failed. We couldn’t find a cost-effective solution that met our quality standards. I moved on to other challenges, such as creating the BBST series. Some others adopted a more critical posture toward certification in general.

Looking back, I think the same problems that motivated thousands of testers (and employers) to seek a credentialing system for software testers are still with us. The question, I think, is not whether we need a good credentialing system. The question is whether we can get a credentialing system that is good.

From some discussions about advanced course design, I think we are likely to see a discussion of advanced credentialing at WTST. The idea that ties this discussion to WTST is that the credential would be based at least partially on performance in advanced courses.

I don’t know whether this discussion will go very far, whether it will be a big part of the meeting itself or just the after-meeting dinners, or whether anyone will come to any agreements. But if you are interested in participating in a constructive discussion about a very hard problem, this might be a good meeting.

To apply to come to WTST, please send me a note (kaner@cs.fit.edu).

For more information about WTST, see http://wtst.org/. For more on the first pilot teaching of the Domain Testing course, which we will teach immediately following WTST, see http://bbst.info.

The “Failure” of Udacity

Saturday, November 23rd, 2013

If you are not aware of it, Udacity is a huge provider of a type of online courses called MOOCs (Massive Open Online Courses). Recently, a founder of Udacity announced that he was disappointed in Udacity’s educational results and was shifting gears from general education to corporate training.

I was brought into some discussions of this among academics and students. A friend suggested that I slightly revise one of my emails for general readership on my blog. So here goes.

My note is specifically a reaction to two articles:

Udacity offers free or cheap courses. My understanding is that it has a completion rate of 10% (only 10% of the students who start, finish) and a pass rate of 5%. This is not a surprising number. Before there were MOOCs, numbers like this were reported for other types of online education in which students set their own pace or worked with little direct interaction with the instructor. For example, I heard that Open University (a school for which I have a lot of respect) had numbers like this.

I am not sure that 10% (or 5%) is a bad rate. If the result is that thousands of people get opportunities that they would otherwise not have had, that’s an important benefit—even if only 5% find the time to make full use of those opportunities.

In general, I’m a fan of open education. When I interviewed for a professorship at Florida Tech in 1999, I presented my goal of creating open courseware for software testing (and software engineering education generally). NSF funded this in 2001. The result has been the BBST course series, used around the world in commercial and academic courses.

Software testing is a great example of the need for courses and courseware that don’t fit within the traditional university stream. I don’t believe that we will see good undergraduate degree programs in software testing. Instead, advanced testing-specific education will come from training companies and professional societies, perhaps under the supervision/guidance of some nonprofits formed for this purpose, either in universities (like my group, the Center for Software Testing Education & Research) or in the commercial space (like ISTQB). As I wrote in a recent post, I believe we have to develop a better credentialing system for software testing.

We are going to talk about this in the Workshop on Teaching Software Testing (WTST 13, January 24-26, 2014). The workshop is focused on Teaching Advanced Courses in Software Testing. It seems clear from preparatory discussions that this topic will be a springboard for discussions of advanced credentials.

Back to the MOOCs.

Udacity (and others) have earned some ill-will in the instructional community. There have been several types of irritants, such as:

  • Some advocates of MOOCs have pushed the idea that MOOCs will eliminate most teaching positions. After all, if you can get a course from one of the world’s best teachers, why settle for second best? The problem with this is that it assumes that teaching = lectures. For most students, this is not true. Students learn by doing things and getting feedback. By writing essays and getting feedback. By writing code and getting feedback. By designing tests and getting feedback. The student activities—running them, coaching students through them, critiquing student work, suggesting follow-up activities for individuals to try next—do not easily scale. I spent about 15 hours this week in face-to-face meetings with individual students, coaching them on statistical analysis or software testing. Next week I will spend about 15 hours in face-to-face meetings with local students or Skype sessions with online students. This is hard work for me, but my students tell me they learn a lot from this. When people dismiss the enormous work that good teachers spend creating and supporting feedback loops for their students—especially when people who stand to make money from convincing customers and investors that this work is irrelevant—those teachers sometimes get annoyed.
  • Some advocates of MOOCs, and several politicians and news columnists, have pushed the idea that this type of education can replace university education. After all, if you can educate a million students at the same time (with one of the world’s best teachers, no less), why bother going to a brick-and-mortar institution? It is this argument that fails when 95% of the students flunk out or drop out. But I think it fails worse when you consider what these students are learning. How hard are the tests they are taking or the assignments they are submitting? How carefully graded is the work—not just how accurate is the grading, though that can certainly be a big issue with computerized grading—but also, how informative is the feedback from grading? Students pay attention to what you tell them about their work. They learn a lot from that, if you give them something to learn from. My impression is that many of the tests/exams are superficial and that much of the feedback is limited and mechanical. When university teachers give this quality of feedback, students complain. They know they should get better than that at school.
  • Proponents of MOOCs typically ignore or dismiss the social nature of education. Students learn a lot from each other. Back when I paid attention to the instructional-research literature, I used to read studies that reported graduating students saying they learned more from each other than from the professors. There are discussion forums in many (most? all?) MOOCs, but from what I’ve seen and been told by others, these are rarely or never well moderated. A skilled instructor keeps forum discussions on track, moves off-topic posts to another forum, asks questions, challenges weak answers, suggests readings and follow-up activities. I haven’t seen or heard of that in the MOOCs.

As far as I can tell, in the typical MOOC course, students get lectures that may have been fantastically expensive to create, but they get little engagement in the course beyond the lectures. They are getting essentially-unsupervised online instruction. And that “instruction” seems to be a technologically-fancier way of reading a book. A fixed set of material flows from the source (the book or the video lecture) to the student. There are cheaper, simpler, and faster ways to read a book.

My original vision for the BBST series was much like this. But by 2006, I had abandoned the idea of essentially-unsupervised online instruction and started working on the next generation of BBST, which would require much more teacher-with-student and student-with-student engagement.

There has been relentless (and well-funded) hype and political pressure to drive universities to offer credit for courses completed on Udacity and platforms like it. Some schools have succumbed to the pressure.

The political pressure on universities that arises from this model has been to push us to lower standards:

  • lower standards of interaction (students can be nameless cattle herded into courses where no one will pay attention to you)
  • lower standards of knowledge expectation (trivial, superficial machine grading of the kind that can scale to a mass audience)
  • lower standards of instructional design (good design starts from considering what students should learn and how to shepherd them through experiences that will help them achieve those learning objectives. Lecture plans are not instructional design, even if the lectures are well-funded, entertaining and glitzy.)

Online instruction doesn’t have to be simplistic, but when all that the public see in the press is well-funded hype that pushes technoglitz over instructional quality, people compare what they see with what is repeated uncritically as if it was news.

The face-to-face model of instruction doesn’t scale well enough to meet America’s (or the world’s) socioeconomic needs. We need new models. I believe that online instruction has the potential to be the platform on which we can develop the new models. But the commoditizing of the instructor and the cattle-herding of the students that have been offered by the likes of Udacity are almost certainly not the answer.

Quality – which I measure by how much students learn – costs money. Personal interaction between students and instructors, significant assignments that get carefully graded and detailed feedback – costs money. It is easy to hire cheap assistants or unqualified adjuncts but it takes more than a warm body to provide high quality feedback. (There are qualified adjuncts, but the law of supply and demand has an effect when adjunct pay is low.)

The real cost of education is not the money. Yes, that is hugely significant. But it is as nothing compared to the years of life that students sacrifice to get an education. The cost of time wasted is irrecoverable.

In the academic world, there are some excellent online courses and there has been a lot of research on instructional effectiveness in these courses. Many online courses are more effective—students learn more—than face-to-face courses that cover the same material. But these are also more intense, for the teacher and the students. The students, and their teachers, work harder.

Becky Fiedler and I formed Kaner Fiedler Associates to support the next generation of BBST courses. We started the BBST effort with a MOOC-like vision of a structure that offers something for almost nothing. Our understanding evolved as we created generations of open courseware.

I think we can create high-quality online education that costs less than traditional schooling. I think we can improve the ways institutions recognize students’ preexisting knowledge, reducing the cost (but not the quality) of credentials. But cost-reducing and value-improvement does not mean “free” or even “cheap.” The price has to be high enough to sustain the course development, the course maintenance, and the costs of training, providing and supervising good instructors. There is, as far as we can tell, no good substitute for this.

New Book: The Domain Testing Workbook

Saturday, November 16th, 2013

Sowmya Padmanabhan, Doug Hoffman and I just published a new book together, The Domain Testing Workbook.

The book focuses on one (1) testing technique. Domain Testing is the name of a generalized approach to Equivalence Class Analysis and Boundary Testing. Our goal is to help you develop skill with this one technique. There are plenty of overviews of this technique: it is the most widely taught, and probably the best understood, technique in the field. However, we’re not aware of any other presentations that are focused on helping you go beyond an understanding of the technique to achieving the ability to use it competently.

This is the first of a series of books that are coming along slowly. Probably the next one will be on scenario testing, with Dr. Rebecca Fiedler, merging her deep knowledge of qualitative methodology with my hands-on use of scenarios in software design, software testing, and software-related human factors. Also in the works are books on risk-based testing and specification-based testing. We’ve been working on all of these for years. We learned much from the Domain Testing Workbook about how challenging it is to write a book with a development-of-skill instructional design goal. At this point, we have no idea what the schedule is for the next three. When the soup is ready, we’ll serve it.

This work comes out of a research proposal that I sent to the United States’ National Science Foundation (NSF) in 2001 (Improving the Education of Software Testers), which had, among its objectives:

  • “Identify skills involved in software testing.”
  • “Identify types of exercises that support the development of specific testing skills.”
  • “Create and publish a collection of reusable materials for exercises and tests.”
  • “Prototype a web-based course on software testing.”
  • “Create a series of workshops that focus on the teaching of software testing”

NSF approved the project, which made it possible for us to open the Center for Software Testing Education & Research (CSTER). The web-based course we had in mind is now available as the BBST series. The Workshops on Teaching Software Testing are now in their 13th year. And the Domain Testing Workbook is our primary contribution focused on “exercises that support the development of specific testing skills.”

When we started this project, we knew that domain testing would be the easiest technique to write this kind of book about. Over the years, we had two surprises that caused us to fundamentally rethink the structure of this book (and of other books that I’m still working on that are focused on scenario testing, risk-based testing, and specification-based testing):

  • Our first surprise (or better put, our first shock) was that we could teach students a broad collection of examples of the application of domain testing, confirm that they could apply what they had learned to similar problems, and yet these students would fail miserably when we gave them a slightly more complex problem that was a little different than they had seen before. This was the core finding of Sowmya’s M.Sc. thesis. What we had tripped over was the transfer problem, which is probably the central instructional-design problem in Science, Technology, Engineering & Mathematics (STEM) instruction. The classic example is of the student who did well in her or his calculus course but cannot figure out how to apply calculus to problems (like modeling acceleration) in their introductory physics course. These students can’t transfer what they learned in one course to another course or to more complex situations (such as using it at their job). We had believed that we could work around the transfer problem by building our instruction around realistic exercises/examples. We were mistaken.
    • Ultimately, we concluded that teaching through exercises is still our best shot at helping people develop skill, but that we needed to provide a conceptual structure for the exercises that could give students a strategy for approaching new problems. We created a schema—an 18-step cognitive structure that describes how we do a domain analysis—and we present every exercise and every example in the context of that schema. We haven’t done the formal, experimental research to check this that Sowmya was able to do with our initial approach—an experiment like that is time-consuming and expensive and our funding for that type of work ran out long ago. However, we have inflicted many drafts of the schema on our students at Florida Tech and we believe it improves their performance and organizes their approach to tasks like exams.
  • Our next surprise was that domain testing is harder to apply than we expected. Doug and I are experienced with this technique. We think we’re pretty good at it, and we’ve thought that for a long time. Many other testers perceive us that way too. For example, Testing Computer Software opens with an example of domain testing and talks about the technique in more detail throughout the book. That presentation has been well received. So, when we decided to write a book with a few dozen examples that increased in complexity, we were confident that we could work through the examples quickly. It might take more time to write our analysis in a way that readers could understand, but doing the analysis would be straightforward. We were sooooooo wrong. Yes, we could quickly get to the core of the problem, identifying how we would approach identifying equivalence classes and boundaries (or non-boundary most-powerful test cases) for each class. Yes, we could quickly list several good tests. We got far enough along that we could impress other people with what we knew and how quickly we could get there, but not far enough to complete the problem. We were often getting through about a third of the analysis before getting stuck. Doug would fly to Palm Bay (Florida, where I live) and we would work problems. Some problems that we expected to take a day to solve and explain took us a week.
    • As we came to understand what skills and knowledge we were actually applying when we slogged through the harder problems, we added more description of our background knowledge to the book. A presentation of our Domain Testing Schema—and the thinking behind it—grew from an expected length of about 30 pages to 200. Our presentation of 30 worked examples grew from an expected length of maybe 120 pages (4 pages each, with diagrams) to 190 pages.

We got a lot of help with the book. Our acknowledgments list 91 people who helped us think through the ideas in the book. Many others helped indirectly, such as many participants in the WTST workshops who taught us critical lessons about the instructional issues we were beating our heads against.

Perhaps the main advance in the clarity of the presentation came out of gentle-but-firm, collegial prodding by Paul Gerrard. Paul’s point was that domain testing is really a way for a tester to model the software. The tests that come out of the analysis are not necessarily tied to the actual code. They are tied to the tester’s mental model of the code. Our first reactions to these comments were that Paul was saying something obvious. But over time we came to understand his point—it might be obvious to us, but presentations of domain testing, including ours, were doing an inadequate job of making it obvious to our readers. This led us to import the idea of a notional variable from financial analysis as a way of describing the type of model that domain testing was leading us to make. We wrote in the book:

“A notional variable reflects the tester’s “notion” of what is in the code. The tester analyzes the program as if this variable was part of the code…. The notional variable is part of a model, created by the tester, to describe how the program behaves or should behave. The model won’t be perfect. That exact variable is probably not in the code. However, the notional variable is probably functionally equivalent to (works the same way as) a variable that is in the code or functionally equivalent to a group of variables that interact to produce the same behavior as this variable.”

This in turn helped us rethink parts of the Schema in ways that improved its clarity. And it helped us clarify our thinking about domain-related exploratory testing as a way of refining the modeling of the notional variables (bringing them into increasingly accurate alignment with the program implementation or, if the implementation is inadequate, with how the program should behave).

I hope you have a chance to read The Domain Testing Workbook and if you do, that you’ll post your reactions here or as a review on Amazon.

Teaching a New Statistics Course: I need your recommendations

Thursday, June 20th, 2013

Starting this Fall, I will be teaching Applied Statistics to undergraduate students majoring in Computer Science and in Software Engineering. I am designing the course around real-life examples (published papers, conference talks, blogged case studies, etc.) of the use of probability and statistics in our field. I need examples.

I prefer examples that show an appropriate use of a model or a statistic, but I will be glad to also teach from a few papers that use a model or statistic in a clearly invalid way. If you send me a paper, or a link to one, I would appreciate it if you would tell me what you think is good about it (for a stats student to study) and why you think that.

Background of the Students

The typical student in the course has studied discrete math, including some combinatorics, and has at least two semesters of calculus. Only some students will have multivariable calculus.

By this point in their studies, most of the students have taken courses in psychology, logic, programming (up to at least Algorithms & Data Structures), two laboratory courses in an experimental science (chemistry, physics, & biology), and some humanities courses, including a course on research sources/systems (how to navigate the research literature).

My Approach to the Course

In one semester, applied stats courses often cover the concept of probability, discrete distributions, continuous distributions, descriptive statistics, basic inferential statistics and an introduction to stochastic models. The treatment of these topics is often primarily theoretical, with close attention to the underlying theorems and to derivation of the attributes of the distributions and their key statistics. Here are three examples of frequently-used texts for these courses. I chose these because you can see their table of contents on the amazon site.

I’d rather teach a more applied course. Rather than working through the topics in a clear linear order, I’d like to start with a list of 25 examples (case studies) and teach enough theory and enough computation to understand each case.

For example, consider a technical support department receiving customer calls. How many staff do they need? How long will customers have to wait before their call is answered? To answer questions like these, students would learn about the Erlang distributions. I’d want them to learn some of the underlying mathematics of the distribution, the underlying model (see this description of the model for example) and how this practical model connects to the mathematical model, and gain some experience with the distribution via simulation.

Examples Wanted

The biggest complaint that students (at Florida Tech and at several other schools, long ago) have voiced to me about statistics is that they don’t understand how the math applies to anything that they care about now or will ever care about. They don’t see the application to their field or to their personal work. Because of that, I have a strong preference for examples from Computer Science / Software Engineering / Information Security / Computer Information Systems.

Several of my students will also relate well to biostatistics examples. Some will work well with quantitative finance.

In the ideal course (a few years from now), a section of the class that focuses on a specific statistic, a specific model, or a specific type problem will have links to several papers that cover essentially the same concepts but in different disciplines. Once I have a computing-related primary example of a topic, I can flesh it out with related examples from other fields.

Please send suggestions either as comments on this blog or by email to me. A typical suggestion would include

  • a link to a paper, a presentation, a blog post or some other source that I can reach and read.
  • comments from you identifying what part of the material I should teach
  • comments from you explaining why this is a noteworthy example
  • any other notes on how it might be taught, why it is important, etc.

Thanks for your help!

 

Credentialing in Software Testing: Elaborating on my STPCon Keynote

Thursday, May 9th, 2013

A couple of weeks ago, I talked about the state of software testing education (and software testing certification) in the keynote panel at STPCon. My comments on high-volume test automation and qualitative methods were more widely noticed, but I think the educational issues are more significant.

Here is a summary:

  1. The North American educational systems are in a state of transition.
  2. We might see a decoupling of formal instruction from credentialing.
  3. We are likely to see a dispersion of credentialing—-more organizations will issue more diverse credentials.
  4. Industrial credentials are likely to play a more significant role in the American economy (and probably have an increased or continued-high influence in many other places).

If these four predictions are accurate, then we have thinking to do about the kinds of credentialing available to software testers.

Transition

For much of the American population, the traditional university model is financially unsustainable. We are on the verge of a national credit crisis because of the immensity of student loan debt.

As a society, we are experimenting with a diverse set of instructional systems, including:

  • MOOCs (massive open online courses)
  • Traditionally-structured online courses with an enormous diversity of standards
  • Low-cost face-to-face courses (e.g. community colleges)
  • Industrial courses that are accepted for university credit
  • Traditional face-to-face courses

Across these, we see the full range from easy to hard, from no engagement with the instructor to intense personal engagement, from little student activity and little meaningful feedback to lots of both. There is huge diversity of standards between course structures and institutions and significant diversity within institutions.

  • Many courses are essentially self-study. Students learn from a book or a lecturer but they get no significant assignments, feedback or assessments. Many people can learn some topics this way. Some people can learn many topics this way. For most people, this isn’t a complete solution, but it could be a partial one.
  • Some of my students prosper most when I give them free rein, friendly feedback and low risk. In an environment that is supportive, provides personalized feedback by a human, but is not demanding, some students will take advantage of the flexibility by doing nothing, some students will get lost, and some students will do their best work.
  • The students who don’t do well in a low-demand situation often do better in a higher-demand course, and in my experience, many students need both—-flexibility in fields that capture their imagination and structure/demand in fields that are less engrossing or that a little farther beyond the student’s current knowledge/ability than she can comfortably stretch to.

There is increasing (enormous) political pressure to allow students to take really-inexpensive MOOCs and get course credit for these at more expensive universities. More generally, there is increasing pressure to allow students to transfer courses across institutions. Most universities allow students to transfer in a few courses, but they impose limits in order to ensure that they transfer their culture to their students and to protect their standards. However, I suspect strongly that the traditional limits are about to collapse. The traditional model is financially unsustainable and so, somewhere, somehow, it has to crack. We will see a few reputable universities pressured (or legislated) into accepting many more credits. Once a few do it, others will follow.

In a situation like this, schools will have to find some other way to preserve their standards—-their reputations, and thus the value of their degree for their graduates.

Seems likely to me that some schools will start offering degrees based on students’ performance on exit exams.

  • A high-standards institution might give a long and complex set of exams. Imagine paying $15,000 to take the exam series (and get grades and feedback) and another $15,000 if you pass, to get the degree.
  • At the other extreme, an institution might offer a suite of multiple-guess exams that can be machine-graded at a much lower cost.

The credibility of the degree would depend on the reputation of the exam (determined by “standards” combined with a bunch of marketing).

Once this system got working, we might see students take a series of courses (from a diverse collection of providers) and then take several degrees.

Maybe things won’t happen this way. But the traditional system is financially unsustainable. Something will have to change, and not just a little.

Decoupling Instruction from Credentialing

The vision above reflects a complete decoupling of instruction from credentialing. It might not be this extreme, but any level of decoupling creates new credentialing pressures / opportunities in industrial settings.

Instruction

Instruction consists of the courses, the coaching, the internships, and any other activities the students engage in to learn.

Credentialing

Credentials are independently-verifiable evidence that a person has some attribute, such as a skill, a type of knowledge, or a privilege.

There are several types of credentials:

  • A certification attests to some level of competency or privilege. For example,
    • A license to practice law, or to do plumbing, is a certification.
    • An organization might certify a person as competent to repair their equipment.
    • An organization might certify that, in their opinion, a person is competent to practice a profession.
  • A certificate attests that someone completed an activity
    • A certificate of completion of a course is a certificate
    • A university degree is a certificate
  • There are also formal recognitions (I’m sure there’s a better name for this…)
    • Awards from professional societies are recognitions
    • Granting someone an advanced type of membership (Senior Member or Fellow) in a professional society is a recognition
    • Election to some organizations (such as the American Law Institute or the Royal Academy of Science) is a recognition
    • I think I would class medals in this group
  • There are peer recognitions
    • Think of the nice things people say about you on Linked-In or Entaggle
  • There are workproducts or results of work that are seen as honors
    • You have published X many publications
    • You worked on the development team for X

The primary credentials issued by universities are certificates (degrees). Sometimes, those are also certifications.

Dispersion of Credentialing

Anyone can issue a credential. However, the prestige, credibility, and power of credentials vary enormously.

  • If you need a specific credential to practice a profession, then no matter who endorses some other credential, or how nicely named that other credential is, it still won’t entitle you to practice that profession.
  • Advertising that you have a specific credential might make you seem more prestigious to some people and less prestigious to other people.

It is already the case that university degrees vary enormously in meaning and prestige. As schools further decouple instruction from degrees, I suspect that this variation will be taken even more seriously. Students of mine from Asia, and some consultants, tell me this is already the case in some Asian countries. Because of the enormous variation in quality among universities, and the large number of universities, a professional certificate or certification is often taken more seriously than a degree from a university that an employer does not know and respect.

Industrial Credentials

How does this relate to software testing? Well, if my analysis is correct (and it might well not be), then we’ll see an increase in the importance and value of credentialing by private organizations (companies, rather than universities).

I don’t believe that we’ll see a universally-accepted credential for software testers. The field is too diverse and the divisions in the field are too deep.

I hope we’ll see several credentialing systems that operate in parallel, reflecting different visions of what people should know, what they should believe, what they should be able to do, what agreements they are willing to make (and be bound by) in terms of professional ethics, and what methods of assessing these things are appropriate and in what depth.

Rather than seeing these as mutually-exclusive competing standards, I imagine that some people will choose to obtain several credentials.

A Few Comments On Our Current State

Software Testing has several types of credentials today. Here are notes on a few. I am intentionally skipping several that feel (to me) redundant with these or about which I have nothing useful to say. My goal is to trigger thoughts, not survey the field.

ISTQB

ISTQB is currently the leading provider of testing certifications in the world. ISTQB is the front end of a community that creates and sells courseware, courses, exams and credentials that align with their vision of the software testing field and the role of education within it. I am not personally fond of the Body of Knowledge that ISTQB bases its exams on. Nor am I fond of their approach to examinations (standardized tests that, to my eyes, emphasize memorization over comprehension and skill). I think they should call their credentials certificates rather than certifications. And my opinion of their marketing efforts is that they are probably not legally actionable, but I think they are misleading. (Apart from those minor flaws, I think ISTQB’s leadership includes many nice people.)

It seems to me that the right way to deal with ISTQB is to treat them as a participant in a marketplace. They sell what they sell. The best way to beat it is to sell something better. Some people are surprised to hear me say that because I have published plenty of criticisms of ISTQB. I think there is lots to criticize. But at some point, adding more criticism is just waste. Or worse, distraction. People are buying ISTQB credentials because they perceive a need. Their perception is often legitimate. If ISTQB is the best credential available to fill their need, they’ll buy it. So, to ISTQB’s critics, I offer this suggestion.

Industrial credentialing will probably get more important, not less important, over the next 20 years. Rather than wasting everyone’s time whining about the shortcomings of current credentials, do the work needed to create a viable alternative.

Before ending my comments on ISTQB, let me note some personal history.

Before ASTQB (American ISTQB) formed, a group of senior people in the community invited me into a series of meetings focused on creating a training-and-credentialing business in the United States. This was a private meeting, so I’m not going to say who sponsored it. The discussion revolved around a goal of providing one or more certification-like credentials for software testers that would be (this is my summary-list, not theirs, but I think it reflects their goals):

  • reasonably attainable (people could affort to get the credential, and reasonably smart people who worked hard could earn it),
  • credible (intellectually and professionally supported by senior people in the field who have earned good reputations),
  • scalable (it is feasible to build an infrastructure to provide the relevant training and assessment to many people), and
  • commercially viable (sufficient income to support instructors, maintainers of the courseware and associated documentation, assessors (such as graders of the students and evaluators of the courses), some level of marketing (because a credential that no one knows about isn’t worth much), and in the case of this group, money left over for profit. Note that many dimensions of “commercial viability” come into play even if there is absolutely no profit motive—-the effort has to support itself, somehow).

I think these are reasonable requirements for a strong credential of this kind.

By this point, ISEB (the precursor to ISTQB) had achieved significant commercial success and gained wide acceptance. It was on people’s minds, but the committee gave me plenty of time to speak:

  • I talked about multiple-choice exams and why I didn’t like them.
  • I talked about the desirability of skill-based exams like Cisco’s, and the challenges of creating courses to support preparation for those types of exams.
  • I talked about some of the thinking that some of us had done on how to create a skill-based cert for testers, especially back when we were writing Lessons Learned.

But there was a problem in this. My pals and I had lots of scattered ideas about how to create the kind of certification system that we would like, but we had never figured out how to make it practical. The ideas that I thought were really good were unscalable or too expensive. And we knew it. If you ask today why there is no certification for context-driven testing, you might hear a lot of reasons, including principled-sounding attacks on the whole notion of certification. But back then, the only reason we didn’t have a context-driven certification was that we had no idea how to create one that we could believe in.

So, what I could not provide to the committee was a reasonably attainable, credible, scalable, commercially viable system—-or a plan to create one.

The committee, quite reasonably, chose to seek a practical path toward a credential that they could actually create. I left the committee. I was not party to their later discussions, but I was not surprised that ASTQB formed and some of these folks chose to work with it. I have never forgotten that they gave me every chance to propose an alternative and I did not have a practical alternative to propose.

(Not long after that, I started an alternative project, Open Certification, to see if we could implement some of my ideas. We did a lot of work in that project, but it failed. They really weren’t practical. We learned a lot, which in turn helped me create great courseware—-BBST—-and other ideas about certification that I might talk about more in the future. But the point that I am trying to emphasize here is that the people who founded ASTQB were open to better ideas, but they didn’t get them. I don’t see a reason to be outraged against them for that.)

The Old Boys’ Club

To some degree, your advancement in a profession is not based on what you know. It’s based on who you know and how much they like you.

We have several systems that record who likes like you, including commercial ones (LinkedIn), noncommercial ones (Entaggle), and various types of marketing structures created by individuals or businesses.

There are advantages and disadvantages to systems based on whether the “right” people like you. Networking will never go away, and never should, but it seems to me that

Credentials based on what you know, what you can do, or what you have actually done are a lot more egalitarian than those based on who says they respect you.

I value personal references and referrals, but I think that reliance on these as our main credentialing system is a sure path to cronyism and an enemy of independent thinking.

My impression is that some people in the community have become big fans of reputation-systems as the field’s primary source of credentials. In at least some of the specific cases, I think the individuals would have liked the system a whole lot less when they were less influential.

Miagi-do

I’ve been delighted to see that the Miagi-do school has finally come public.

Michael Larsen states a key view succinctly:

I distrust any certification or course of study that doesn’t, in some way, actually have a tester demonstrate their skills, or have a chance to defend their reasoning or rationale behind those skills.

In terms of the four criteria that I mentioned above, I think this approach is probably reasonably attainable, and to me, it is definitely credible. Whether it scalable and commercially viable has yet to be seen.

I think this is a clear and important alternative to ISTQB-style credentialing. I hope it is successful.

Other Ideas on the Horizon

There are other ideas on the horizon. I’m aware of a few of them and there are undoubtedly many others.

It is easy to criticize any specific credentialing system. All of them, now known or coming soon, have flaws.

What I am suggesting here is:

  • Industrial credentialing is likely to get more important whether you like it or not.
  • If you don’t like the current options, complaining won’t do much good. If you want to improve things, create something better.


This post is partially based on work supported by NSF research grant CCLI-0717613 ―Adaptation & Implementation of an Activity-Based Online or Hybrid Course in Software Testing. Any opinions, findings and conclusions or recommendations expressed in this post are those of the author and do not necessarily reflect the views of the National Science Foundation.

Follow-Up Testing in the BBST Bug Advocacy Course

Sunday, February 10th, 2013

Becky and I are working on a new version of the BBST courses (BBST-2014). In the interim, to support the universities teaching the course, the AST, and the many people who are studying the materials on their own, we’re publishing some of the ideas we have for clarifying the course. The first two in this series focused on oracles in the Foundations course and on interactive grading as a way to give students more detailed feedback. This post is about follow-up testing, which we cover in the current BBST-BA’s slides 44-68.

Some failures are significant and they occur under circumstances that seem fairly commonplace. These will either be fixed, or there will be a compelling reason to not fix them.

Other failures need work. When you see them, there’s ambiguity about the significance of the underlying bug:

  • Some failures look minor. Underlying the failure is a bug that might (or might not) be more serious than you’d imagine from the first failure.
  • Some failures look rare or isolated. Underlying that failure is a bug that might (or might not) cause failures more often, or under a wider range of conditions, than you’d imagine from the first failure.

Investigating whether a minor-looking failure reflects a more serious bug

To find out whether the underlying bugs are more serious than the first failures make them look, we can do follow-up testing. But what tests?

That’s a question that Jack Falk, Hung Quoc Nguyen and I wrestled with many times. You can see a list of suggestions in Testing Computer Software. Slides 44-56 sort those ideas (and add a few) into four categories:

  1. Vary your behavior
  2. Vary the options and settings of the program
  3. Vary data that you load into the program
  4. Vary the software and hardware environment

Some students get confused by the categories (which is not shocking, because the categories are a somewhat idiosyncratic attempt to organize a broad collection of test ideas), confused enough that they don’t do a good job on the exam of generating test ideas from the categories.

For example, they have trouble with this question:

Suppose that you find a reproducible failure that doesn’t look very serious.

  • Describe the four tactics presented in the lecture for testing whether the defect is more serious than it first appeared.
  • As a particular example, suppose that the display got a little corrupted (stray dots on the screen, an unexpected font change, that kind of stuff) in Impress when you drag the scroll bar up and down. Describe four follow-up tests that you would run, one for each of the tactics that you listed above.

I’m not going to solve this puzzle for you, but the solution should be straightforward if you understand the categories.

The slides work through a slightly different example:

A program unexpectedly but slightly scrolls the display when you add two numbers:

  • The task is entering numbers and adding
  • The failure is the scrolling.

Let’s consider the categories in terms of this example

1. Vary your behavior

When you run a test, you intentionally do some things as part of the test. For example, you might:

  • enter some data into input variables
  • write some data into data files tha tthe program will read
  • give the program commands

You might change any of these as part of your follow-up testing. (What happens if I do this instead of that?)

These follow-up tests might include changing the data or adding steps, substituting steps, or taking steps away.

For example, if adding one pair of numbers causes unexpected scrolling, suppose you try adding two numbers many times. Will the program scroll more, or scroll differently, as you repeat the test?

Suppose we modified the example so the program reads (and then adds) two numbers from a data file. Changing that data file would be another example of varying your behavior.

The slides give several additional examples.

2. Vary the options and settings of the program

Think about Microsoft Word. Here are some examples of its options:

  • Show (or don’t show) formatting marks on the screen
  • Check spelling (or don’t check it) as you type

In addition, you might change a template that controls the formatting of new documents. Some examples of variables you might change in the template are:

  • the default typeface
  • the spacing between tab stops
  • the color of the text

Which of these are “options” and which of these are “settings”? It doesn’t matter. The terminology will change from program to program. What doesn’t change is that these are persistent variables. Their value stays with the program from one document to another.

3. Vary data that you load into the program

This isn’t well worded. Students confuse what I’m talking about with the basic test data.

Imagine again testing Microsoft Word. Suppose that you are focused on the format of the document, so your test documents have lots of headings and tables and columns and headers and footers (etc.). If you change the document, save it, and load the revised one, that is data that you load into the program, but I think of that type of change as part of 1. Vary your behavior.

When Word starts up, it also loads some files that might not be intentional parts of your test. For example, it loads a dictionary, a help file, a template, and probably other stuff. Often, we don’t even think of these files (and how what they hold might affect memory or performance) when we design tests. Sometimes, changing one of these files can reveal interesting information.

4. Vary the software and hardware environment

For example,

  • Change the operating system’s settings, such as the language settings
  • Change the hardware (a different video card) or how the operating system works with the hardware (a different driver)
  • Change hardware settings (same video card, different display resolution)

This is a type of configuration testing, but the goal here is to try to demonstrate a more impressive failure, not to assess the range of circumstances under which the bug will appear.

Investigating whether an obscure-looking failure will arise under more circumstances

In this case, the failure shows up under what appear to be special circumstances. Does it only show up under special circumstances?

Slides 58-68 discuss this, but some additional points are made on other slides or in the taped lecture. Bringing them together…

  1. Uncorner your corner cases
  2. Look for configuration dependence
  3. Check whether the bug is new to this version
  4. Check whether failures like this one already appear in the bug database
  5. Check whether bugs of this kind appear in other programs

Here are a few notes:

1. Uncorner your corner cases

Risk-based tests often use extreme values (boundary conditions). These are good for exposing a failure, but once you find the failure, try less extreme values. Demonstration of failure with a less extreme test will yield a more credible report.

2. Look for configuration dependence

In this case, the question is whether the failure will appear on many configurations or just this one. Try it with more memory, with another version of operating system (or on another OS altogether), etc.

3. Check whether the bug is new to this version

Does this bug appear in earlier versions of the program? If so, did users (or others) complain about it?

If the bug is new, especially if it was a side-effect of a fix to another bug, some people will take it much more seriously than a bug that has been around a long time but rarely complained about.

4. Check whether bugs like this one already appear in the bug database

One of the obvious ways to investigate whether a failure appears under more general circumstances than the ones in a specific test is to check the bug tracking database to see whether the failure has in fact occurred under other circumstances. It often takes some creativity and patience to search out reports of related failures (because they probably aren’t reported in exactly the same way as you’re thinking of the current failure), but if your database has lots of not-yet-fixed bugs, such a search is often worthwhile.

5. Check whether bugs of this kind appear in other programs

The failure you’re seeing might be caused by the code specifically written by this programmer, or the bug might be in a library used by the programmer. If it’s in the library, the same bug will be in other programs. Similarly, some programmers model (or copy) their code from textbook descriptions or from code they find on the web. If that code is incorrect, the error will probably show up in other programs.

If the error does appear in other programs, you might find discussions of the error (how to find it, when it appears, how serious it is) in discussions of those programs.

This post is partially based on work supported by NSF research grant CCLI-0717613 ―Adaptation & Implementation of an Activity-Based Online or Hybrid Course in Software Testing. Any opinions, findings and conclusions or recommendations expressed in this post are those of the author and do not necessarily reflect the views of the National Science Foundation.